Fluorescein-Inspired Near-Infrared Chemodosimeter for Luminescence Bioimaging

2019 ◽  
Vol 26 (21) ◽  
pp. 4029-4041 ◽  
Author(s):  
Hai-Yan Wang ◽  
Huisheng Zhang ◽  
Siping Chen ◽  
Yi Liu

Luminescence bioimaging is widely used for noninvasive monitoring of biological targets in real-time with high temporal and spatial resolution. For efficient bioimaging in vivo, it is essential to develop smart organic dye platforms. Fluorescein (FL), a traditional dye, has been widely used in the biological and clinical studies. However, visible excitation and emission limited their further application for in vivo bioimaging. Nearinfrared (NIR) dyes display advantages of bioimaging because of their minimum absorption and photo-damage to biological samples, as well as deep tissue penetration and low auto-luminescence from background in the living system. Thus, some great developments of near-infrared fluorescein-inspired dyes have emerged for bioapplication in vitro and in vivo. In this review, we highlight the advances in the development of the near-infrared chemodosimeters for detection and bioimaging based on the modification of fluoresceininspired dyes naphtho-fluorescein (NPF) and cyanine-fluorescein (Cy-FL).

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Na Xie ◽  
Ya Hou ◽  
Shaohui Wang ◽  
Xiaopeng Ai ◽  
Jinrong Bai ◽  
...  

Abstract Imaging in the second near-infrared II (NIR-II) window, a kind of biomedical imaging technology with characteristics of high sensitivity, high resolution, and real-time imaging, is commonly used in the diagnosis of brain diseases. Compared with the conventional visible light (400–750 nm) and NIR-I (750–900 nm) imaging, the NIR-II has a longer wavelength of 1000–1700 nm. Notably, the superiorities of NIR-II can minimize the light scattering and autofluorescence of biological tissue with the depth of brain tissue penetration up to 7.4 mm. Herein, we summarized the main principles of NIR-II in animal models of traumatic brain injury, cerebrovascular visualization, brain tumor, inflammation, and stroke. Simultaneously, we encapsulated the in vivo process of NIR-II probes and their in vivo and in vitro toxic effects. We further dissected its limitations and following optimization measures.


Author(s):  
Yaxi Li ◽  
Hongli Zhou ◽  
Renzhe Bi ◽  
Xiuting Li ◽  
Menglei Zha ◽  
...  

Fluorescence imaging in the second near-infrared window (NIR-II) has been an emerging technique in diverse in vivo applications with high sensitivity/resolution and deep tissue penetration. To date, the designing principle...


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Xunzhi Wu ◽  
Yongkuan Suo ◽  
Hui Shi ◽  
Ruiqi Liu ◽  
Fengxia Wu ◽  
...  

Abstract Photothermal therapy (PTT) using near-infrared (NIR) light for tumor treatment has triggered extensive attentions because of its advantages of noninvasion and convenience. The current research on PTT usually uses lasers in the first NIR window (NIR-I; 700–900 nm) as irradiation source. However, the second NIR window (NIR-II; 1000–1700 nm) especially NIR-IIa window (1300–1400 nm) is considered much more promising in diagnosis and treatment as its superiority in penetration depth and maximum permissible exposure over NIR-I window. Hereby, we propose the use of laser excitation at 1275 nm, which is approved by Food and Drug Administration for physical therapy, as an attractive technique for PTT to balance of tissue absorption and scattering with water absorption. Specifically, CuS-PEG nanoparticles with similar absorption values at 1275 and 808 nm, a conventional NIR-I window for PTT, were synthesized as PTT agents and a comparison platform, to explore the potential of 1275 and 808 nm lasers for PTT, especially in deep-tissue settings. The results showed that 1275 nm laser was practicable in PTT. It exhibited much more desirable outcomes in cell ablation in vitro and deep-tissue antitumor capabilities in vivo compared to that of 808 nm laser. NIR-IIa laser illumination is superior to NIR-I laser for deep-tissue PTT, and shows high potential to improve the PTT outcome.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Zhen Zhang ◽  
Muthu Kumara Gnanasammandhan Jayakumar ◽  
Xiang Zheng ◽  
Swati Shikha ◽  
Yi Zhang ◽  
...  

Abstract Upconversion nanoparticles (UCNPs) are the preferred choice for deep-tissue photoactivation, owing to their unique capability of converting deep tissue-penetrating near-infrared light to UV/visible light for photoactivation. Programmed photoactivation of multiple molecules is critical for controlling many biological processes. However, syntheses of such UCNPs require epitaxial growth of multiple shells on the core nanocrystals and are highly complex/time-consuming. To overcome this bottleneck, we have modularly assembled two distinct UCNPs which can individually be excited by 980/808 nm light, but not both. These orthogonal photoactivable UCNPs superballs are used for programmed photoactivation of multiple therapeutic processes for enhanced efficacy. These include sequential activation of endosomal escape through photochemical-internalization for enhanced cellular uptake, followed by photocontrolled gene knockdown of superoxide dismutase-1 to increase sensitivity to reactive oxygen species and finally, photodynamic therapy under these favorable conditions. Such programmed activation translated to significantly higher therapeutic efficacy in vitro and in vivo in comparison to conventional, non-programmed activation.


2021 ◽  
Vol 9 ◽  
Author(s):  
Lujia Chen ◽  
Meijuan Chen ◽  
Yuping Zhou ◽  
Changsheng Ye ◽  
Ruiyuan Liu

Preparation of near-infrared (NIR) emissive fluorophore for imaging-guided PDT (photodynamic therapy) has attracted enormous attention. Hence, NIR photosensitizers of two-photon (TP) fluorescent imaging and photodynamic therapy are highly desirable. In this contribution, a novel D-π-A structured NIR photosensitizer (TTRE) is synthesized. TTRE demonstrates near-infrared (NIR) emission, good biocompatibility, and superior photostability, which can act as TP fluorescent agent for clear visualization of cells and vascular in tissue with deep-tissue penetration. The PDT efficacy of TTRE as photosensitizer is exploited in vitro and in vivo. All these results confirm that TTRE would serve as potential platform for TP fluorescence imaging and imaging-guided photodynamic therapy.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Elizabeth De Jesus ◽  
Jane J. Keating ◽  
Sumith A. Kularatne ◽  
Jack Jiang ◽  
Ryan Judy ◽  
...  

Background. Intraoperative imaging can identify cancer cells in order to improve resection; thus fluorescent contrast agents have emerged. Our objective was to do a preclinical comparison of two fluorescent dyes, EC17 and OTL38, which both target folate receptor but have different fluorochromes. Materials. HeLa and KB cells lines were used for in vitro and in vivo comparisons of EC17 and OTL38 brightness, sensitivity, pharmacokinetics, and biodistribution. In vivo experiments were then performed in mice. Results. The peak excitation and emission wavelengths of EC17 and OTL38 were 470/520 nm and 774/794 nm, respectively. In vitro, OTL38 required increased incubation time compared to EC17 for maximum fluorescence; however, peak signal-to-background ratio (SBR) was 1.4-fold higher compared to EC17 within 60 minutes (p<0.001). Additionally, the SBR for detecting smaller quantity of cells was improved with OTL38. In vivo, the mean improvement in SBR of tumors visualized using OTL38 compared to EC17 was 3.3 fold (range 1.48–5.43). Neither dye caused noticeable toxicity in animal studies. Conclusions. In preclinical testing, OTL38 appears to have superior sensitivity and brightness compared to EC17. This coincides with the accepted belief that near infrared (NIR) dyes tend to have less autofluorescence and scattering issues than visible wavelength fluorochromes.


2021 ◽  
Vol 57 (74) ◽  
pp. 9366-9369
Author(s):  
Lu Lu ◽  
Mingzi Sun ◽  
Tong Wu ◽  
Qiuyang Lu ◽  
Bolong Huang

A comprehensive defected-assisted mechanism for persistent luminescence in the NIR-II and NIR-III windows has been proposed in Cr-doped LaAlO3 nanoparticles, where both decay time and luminescence intensity can be flexibly tuned by different defects.


Nanoscale ◽  
2021 ◽  
Author(s):  
Fei Wang ◽  
Xiaoju Men ◽  
Haobin Chen ◽  
Feixue Mi ◽  
Mengze Xu ◽  
...  

Photoacoustic imaging (PAI)-guided photothermal therapy (PTT) has drawn considerable attention due to the deeper tissue penetration and higher maximum permissible exposure. However, current phototheranostic agents are greatly restricted to the...


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2436-2436
Author(s):  
Simone S Riedel ◽  
Marco Herold ◽  
Markus Hirschberg ◽  
Christian Brede ◽  
Carina A Baeuerlein ◽  
...  

Abstract Abstract 2436 Poster Board II-413 Sensitive in vivo imaging methods have advanced the fields of stem cell transplantation, graft-versus–host disease (GVHD) and graft-versus-tumor responses (GVT). Near-infrared (NIF) fluorescent proteins (FP) appear advantageous for deeper tissue penetration due to minimized absorbance by hemoglobin, water and lipids. Therefore we tested whether a recently published NIF FP (FP635, “Katushka”) could serve as a single reporter for whole body and single cell imaging. To compare signal intensities of eGFP and FP635 we generated fluorescent MOSEC cell lines (mouse ovarian cancer), titrated them in vitro and subcutaneously (s.c.) in vivo in Balb/c nu/nu mice. MOSEC FP635 showed twice the signal intensities compared to MOSEC eGFP in vitro by spectral fluorescence imaging (FLI). In vivo the eGFP signal was attenuated >60% in contrast to only 20% for FP635 from subcutaneous sites. However, FP635 signals from deep tissue layers were quenched. To address whether reduced signal attenuation of FP635 may allow sensitive visualization of immune processes by FLI and multiphoton-laser-scanning-microscopy (MPM) we generated transgenic mice in the genetic C57Bl/6 (B6) background, expressing FP635 under the ubiquitin promoter. Transgenic founders were selected upon signal intensities of leukocyte populations measured by flow cytometry in the PerCP channel. Combination of FP635 with colors other than red were possible for multiparameter flow cytometry. Next, eGFP, DsRed and FP635 splenocytes from transgenic donors were titrated as described above. In vitro signal intensities of FP635 splenocytes were >5 times lower compared to the other two FPs. FP635 signal absorption in vivo was low (30%) which is consistent with MOSEC titration results. In vivo DsRed detection was most sensitive and signals were similarly attenuated as FP635 in contrast to eGFP (60%). Subsequently, we aimed to visualize FP635 in a model of GVHD, where alloreactive T cells undergo massive expansion. Balb/c nu/nu mice were lethally irradiated and transplanted with 5×106 B6.WT bone marrow cells plus either 2×107 B6.DsRed+Luciferase+ or 2×107 B6.FP635 splenocytes. Sensitivity for DsRed cell detection was superior over FP635 cells. FP635 signal was only weakly detectable in lymph nodes (LN) by ex vivo FLI, where DsRed signals were detectable at earlier timepoints and LNs were even visualized by in vivo FLI. DsRed+ Luciferase+ double transgenic splenocytes allowed direct comparison of bioluminescence imaging (BLI) to FLI. Timely in vivo visualization of immune cells in deep tissues was feasible only by BLI. After whole body imaging the suitability of FP635 for MPM was checked by co-injecting eGFP B cells and either DsRed or FP635 T cells intravenously into RAG-/- mice. As FP635 is a NIF FP we expected to achieve deeper tissue penetration in hemoglobin rich organs, such as the spleen, in single cell microscopy. After 6 weeks of adoptive cell transfer we imaged spleens by MPM. Tissue penetration depths of DsRed or FP635 T cells were compared to eGFP B cells. No advantage in penetration depth of FP635 over DsRed was measured. Photobleaching is an important factor for microscopy, especially if cells are to be tracked over long time. FP635 transfected 293T cells bleached faster (t1/2=108 sec) than 293T cells transfected with eGFP (t1/2>900 sec) or DsRed (t1/2=411 sec). These experiments indicate that very high expression levels of FP635 need to be achieved for imaging. The signal attenuation of FP635 is low which may increase the sensitivity but in our hands DsRed showed comparable characteristics. Yet, the fast photobleaching of FP635 compared to the broadly established FPs DsRed and eGFP may be disadvantageous for long term microscopic tracking of cells. Our data indicate that BLI is by far superior over FLI in sensitivity and tissue penetration for whole body imaging of immune cells. However, FLI of red or near-infrared clonally selectable tumor cell lines may provide a welcome color addition to study immune cell-tumor interactions in combined models of BLI and FLI. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Vol 18 ◽  
Author(s):  
Zirui Zhang ◽  
Shangcong Han ◽  
Panpan Liu ◽  
Xu Yang ◽  
Jing Han ◽  
...  

Background: Chronic inflammation and lack of angiogenesis are the important pathological mechanisms in deep tissue injury (DTI). Curcumin is a well-known anti-inflammatory and antioxidant agent. However, curcumin is unstable under acidic and alkaline conditions, and can be rapidly metabolized and excreted in the bile, which shortens its bioactivity and efficacy. Objective: This study aimed to prepare curcumin-loaded poly (lactic-co-glycolic acid) nanoparticles (CPNPs) and to elucidate the protective effects and underlying mechanisms of wound healing in DTI models. Methods: CPNPs were evaluated for particle size, biocompatibility, in vitro drug release and their effect on in vivo wound healing. Results : The results of in vivo wound closure analysis revealed that CPNP treatments significantly improved wound contraction rates (p<0.01) at a faster rate than other three treatment groups. H&E staining revealed that CPNP treatments resulted in complete epithelialization and thick granulation tissue formation, whereas control groups resulted in a lack of compact epithelialization and persistence of inflammatory cells within the wound sites. Quantitative real-time PCR analysis showed that treatment with CPNPs suppressed IL-6 and TNF-α mRNA expression, and up-regulated TGF-β, VEGF-A and IL-10 mRNA expression. Western blot analysis showed up-regulated protein expression of TGF-β, VEGF-A and phosphorylatedSTAT3. Conclusion: Our results showed that CPNPs enhanced wound healing in DTI models, through modulation of the JAK2/STAT3 signalling pathway and subsequent upregulation of pro-healing factors.


Sign in / Sign up

Export Citation Format

Share Document