Conducting and Superhydrophobic Hybrid 2D Material from Coronene and Pyrene

Author(s):  
Jyothibabu Sajila Arya ◽  
Malay Krishna Mahato ◽  
Sethuraman Sankararaman ◽  
Prasad Edamana

Graphdiyne, a recent addition to the family of 2D covalent organic nanosheet structure, is known for its structural stability and potential applications in catalysis, sensors, electronics and optoelectronics. Design and...

Cellulose ◽  
2018 ◽  
Vol 25 (3) ◽  
pp. 1657-1672 ◽  
Author(s):  
Dimas Ignacio Torres ◽  
María Emilia Villanueva ◽  
Juan Manuel Lázaro-Martínez ◽  
Guillermo Javier Copello ◽  
Viviana Campo Dall’ Orto

2021 ◽  
pp. 2140003
Author(s):  
YU LI HUANG ◽  
ANDREW THYE SHEN WEE

Organic–2D material heterostructures have attracted intensive research interest due to their intriguing properties, with a wide range of potential applications in multifunctional flexible electronic and optoelectronic devices. Central to the realization of such devices is a fundamental understanding of the electronic structures at organic–2D material heterointerfaces. The energy level alignment (ELA) at the interface is of paramount importance because it determines the charge transfer barriers between the two materials in contact. In this paper, we discuss the physical mechanisms determining the ELAs, with special attention on interfacial charge transfer at the heterostructures. We review the current understanding of electronic properties at the heterointerfaces formed by the integration of organics with graphene and 2D transition metal dichalcogenides (TMDs), and conclude with a perspective on the future development of organic–2D material heterostructure.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Sadegh Mehdi Aghaei ◽  
Ingrid Torres ◽  
Irene Calizo

Silicene, a novel graphene-like material, has attracted a significant attention because of its potential applications for nanoelectronics. In this paper, we have theoretically investigated the structural stability of edge-hydrogenated and edge-fluorinated silicene nanoribbons (SiNRs) via first-principles calculations. Various edge forms of SiNRs including armchair edge, zigzag edge, Klein edge, reconstructed Klein edge, reconstructed pentagon-heptagon edge, and hybrid edges have been considered. It has been found that fully fluorinated Klein edge SiNRs, in which each edge Si atom is terminated by three fluorine atoms, are the most stable structure. We also discovered that a hybrid edge structure of trihydrogenated Klein edge and dihydrogenated zigzag edge can increase the nanoribbon’s stability up to that of dihydrogenated armchair edge SiNR, which is known as the most stable edge-hydrogenated structure. With the attractive properties of silicene for practical applications, the obtained results will advance experimental investigations toward the development of silicene based devices.


1995 ◽  
Vol 401 ◽  
Author(s):  
M. E. Hawley ◽  
X. D. Wu ◽  
P. N. Arendt ◽  
C. D. Adams ◽  
M. F. Hundley ◽  
...  

AbstractThe properties encompassed by the family of complex metal oxides span the spectrum from superconductors to insulating ferroelectrics. Included in this family are the new colossal magnetoresistive perovskites with potential applications in advanced high density magnetic data storage devices based on single or multilayer thin films units of these materials fabricated by vapor phase deposition (PVD) methods. The realization of this potential requires solving basic thin film materials problems requiring understanding and controlling the growth of these materials. Toward this end, we have grown La0.7Ca0.3MnO3 and La0.7Sr0.3MnO3 on LaAlO3 single crystal substrates by pulsed laser and RF sputter deposition at temperatures from 500° C to 900° C and annealed at over 900° C for about 10 hours. The evolution of the microstructure of these films was studied by scanning probe microscopies and transmission electron microscopy (TEM).The results of SPM characterization showed that at the lower end of the growth temperature range, the as-grown films were polygranular with grain size increasing with temperature. The 500° C as-grown films appeared to be amorphous while the 750° C film grains were layered with terrace steps often one unit cell high. In contrast, films grown at 900° C consisted of coalesced islands with some 3-D surface crystals. After annealing, all films had coalesced into very large extended layered islands. The change in microstructure was reflected in a decreased resistivity of coalesced films over their unannealed granular precursors. Previous reported work on the growth of La0.84 Sr0.16MnO3 and La0.8Sr0 2CoO3 grown demonstrated the sensitivity of the microstructure to substrate and deposition conditions. Films grown on an “accidental” vicinal surface grew by a step flow mechanism.


1991 ◽  
Vol 56 (1) ◽  
pp. 276-294 ◽  
Author(s):  
Arnon Avron

Many-valued logics in general and 3-valued logic in particular is an old subject which had its beginning in the work of Łukasiewicz [Łuk]. Recently there is a revived interest in this topic, both for its own sake (see, for example, [Ho]), and also because of its potential applications in several areas of computer science, such as proving correctness of programs [Jo], knowledge bases [CP] and artificial intelligence [Tu]. There are, however, a huge number of 3-valued systems which logicians have studied throughout the years. The motivation behind them and their properties are not always clear, and their proof theory is frequently not well developed. This state of affairs makes both the use of 3-valued logics and doing fruitful research on them rather difficult.Our first goal in this work is, accordingly, to identify and characterize a class of 3-valued logics which might be called natural. For this we use the general framework for characterizing and investigating logics which we have developed in [Av1]. Not many 3-valued logics appear as natural within this framework, but it turns out that those that do include some of the best known ones. These include the 3-valued logics of Łukasiewicz, Kleene and Sobociński, the logic LPF used in the VDM project, the logic RM3 from the relevance family and the paraconsistent 3-valued logic of [dCA]. Our presentation provides justifications for the introduction of certain connectives in these logics which are often regarded as ad hoc. It also shows that they are all closely related to each other. It is shown, for example, that Łukasiewicz 3-valued logic and RM3 (the strongest logic in the family of relevance logics) are in a strong sense dual to each other, and that both are derivable by the same general construction from, respectively, Kleene 3-valued logic and the 3-valued paraconsistent logic.


2012 ◽  
Vol 40 (1) ◽  
pp. 268-272 ◽  
Author(s):  
Lifei Fan ◽  
Harry Mellor

The Rif GTPase is a recent addition to small Rho GTPase family; it shares low homology with other members in the family and evolutionarily parallels with the development of vertebrates. Rif has the conserved Rho GTPase domain structures and cycles between a GDP-bound inactive form and a GTP-bound active form. In its active form, Rif signals through multiple downstream effectors. In the present review, our aim is to summarize the current information about the Rif effectors and how Rif remodels actin cytoskeleton in many aspects.


Author(s):  
G. C. Ibeh ◽  
E. J. Ekpenyoung ◽  
K. Anyiam ◽  
C. John

This study introduces a new distribution in the family of generalized exponential distributions generated using the transformed-transformer method. Some properties of the distribution are presented. The new distribution has three parameters and they are estimated numerically using the BGFS iterative method implemented in R software. Two real sets of data are adopted to demonstrate the flexibility and potential applications of the new distribution.


Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 476
Author(s):  
María Gimeno-Pérez ◽  
Zoran Merdzo ◽  
Eva Castillo-Rosa ◽  
Carlos Martín de Hijas ◽  
María Fernández-Lobato

The β-fructofuranosidase from the yeast Rhodotorula dairenensis (RdINV) produces a mixture of potential prebiotic fructooligosaccharides (FOS) of the levan-, inulin- and neo-FOS series by transfructosylation of sucrose. In this work, the gene responsible for this activity was characterized and its functionality proved in Pichia pastoris. The amino acid sequence of the new protein contained most of the characteristic elements of β-fructofuranosidases included in the family 32 of the glycosyl hydrolases (GH32). The heterologous yeast produced a protein of about 170 kDa, where N-linked and O-linked carbohydrates constituted about 15% and 38% of the total protein mass, respectively. Biochemical and kinetic properties of the heterologous protein were similar to the native enzyme, including its ability to produce prebiotic sugars. The maximum concentration of FOS obtained was 82.2 g/L, of which 6-kestose represented about 59% (w/w) of the total products synthesized. The potential of RdINV to fructosylate 19 hydroxylated compounds was also explored, of which eight sugars and four alditols were modified. The flexibility to recognize diverse fructosyl acceptors makes this protein valuable to produce novel glycosyl-compounds with potential applications in food and pharmaceutical industries.


Plants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 284
Author(s):  
Alexey Shipunov ◽  
Shyla Carr ◽  
Spencer Furniss ◽  
Kyle Pay ◽  
José Rubens Pirani

Picramniaceae is the only member of Picramniales which is sister to the clade (Sapindales (Huerteales (Malvales, Brassicales))) in the rosidsmalvids. Not much is known about most aspects of their ecology, geography, and morphology. The family is restricted to American tropics. Picramniaceae representatives are rich in secondary metabolites; some species are known to be important for pharmaceutical purposes. Traditionally, Picramniaceae was classified as a subfamily of Simaroubaceae, but from 1995 on, it has been segregated containing two genera, Picramnia and Alvaradoa, with the recent addition of a third genus, Nothotalisia, described in 2011. Only a few species of the family have been the subject of DNA-related research, and fewer than half of the species have been included in morphological phylogenetic analyses. It is clear that Picramniaceae remains a largely under-researched plant group. Here we present the first molecular phylogenetic tree of the group, based on both chloroplast and nuclear markers, widely adopted in the plant DNA barcoding. The main findings are: The family and its genera are monophyletic and Picramnia is sister to two other genera; some clades corroborate previous assumptions of relationships made on a morphological or geographical basis, while most parts of the molecular topology suggest high levels of homoplasy in the morphological evolution of Picramnia.


Sign in / Sign up

Export Citation Format

Share Document