scholarly journals The β-Fructofuranosidase from Rhodotorula dairenensis: Molecular Cloning, Heterologous Expression, and Evaluation of Its Transferase Activity

Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 476
Author(s):  
María Gimeno-Pérez ◽  
Zoran Merdzo ◽  
Eva Castillo-Rosa ◽  
Carlos Martín de Hijas ◽  
María Fernández-Lobato

The β-fructofuranosidase from the yeast Rhodotorula dairenensis (RdINV) produces a mixture of potential prebiotic fructooligosaccharides (FOS) of the levan-, inulin- and neo-FOS series by transfructosylation of sucrose. In this work, the gene responsible for this activity was characterized and its functionality proved in Pichia pastoris. The amino acid sequence of the new protein contained most of the characteristic elements of β-fructofuranosidases included in the family 32 of the glycosyl hydrolases (GH32). The heterologous yeast produced a protein of about 170 kDa, where N-linked and O-linked carbohydrates constituted about 15% and 38% of the total protein mass, respectively. Biochemical and kinetic properties of the heterologous protein were similar to the native enzyme, including its ability to produce prebiotic sugars. The maximum concentration of FOS obtained was 82.2 g/L, of which 6-kestose represented about 59% (w/w) of the total products synthesized. The potential of RdINV to fructosylate 19 hydroxylated compounds was also explored, of which eight sugars and four alditols were modified. The flexibility to recognize diverse fructosyl acceptors makes this protein valuable to produce novel glycosyl-compounds with potential applications in food and pharmaceutical industries.

Author(s):  
Jyothibabu Sajila Arya ◽  
Malay Krishna Mahato ◽  
Sethuraman Sankararaman ◽  
Prasad Edamana

Graphdiyne, a recent addition to the family of 2D covalent organic nanosheet structure, is known for its structural stability and potential applications in catalysis, sensors, electronics and optoelectronics. Design and...


Agriculture ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 584
Author(s):  
Hafza Fasiha Zahid ◽  
Chaminda Senaka Ranadheera ◽  
Zhongxiang Fang ◽  
Said Ajlouni

Among the waste by-products generated by the fruit industry (peels, seeds, and skins), fruit peel constitutes the major component. It is estimated that fruit peel accounts for at least 20% of the fresh fruit weight. Fruit peels are considered as major sources of dietary fiber and anticipated to be successfully utilized as prebiotics. This study examined the chemical composition, functional properties and the prebiotic effects of three major tropical fruit peels (apple, banana and mango). The prebiotic effect was tested using three commercial probiotic strains (Lactobacillus rhamnosus, L. casei and Bifidobacterium lactis) individually and in combination. Each probiotic culture was fortified with different concentration (0%, 2% and 4%) of selected fruit peel powder (FPP). Results revealed that all tested FPP significantly (p < 0.05) enhanced the probiotics viable counts, which reached >10 logs after 24 h of incubation. However, the concentration of 2% and 4% FPP showed no significant differences (p > 0.05) on the probiotic viable counts. Additionally, the prebiotic effects of FPP were the same when applied to individual and mixed cultures. This investigation demonstrated that small amount (2%) of apple, banana and mango peel powder could be successfully utilized as prebiotics to enhance the growth of lactic acid bacteria (LAB). Additionally, the studied physical and chemical characteristics of FPP demonstrated their potential applications in the food and pharmaceutical industries as functional ingredients.


2021 ◽  
Vol 2021 ◽  
pp. 1-20 ◽  
Author(s):  
Dhinakaran Veeman ◽  
M. Swapna Sai ◽  
P. Sureshkumar ◽  
T. Jagadeesha ◽  
L. Natrayan ◽  
...  

As a technique of producing fabric engineering scaffolds, three-dimensional (3D) printing has tremendous possibilities. 3D printing applications are restricted to a wide range of biomaterials in the field of regenerative medicine and tissue engineering. Due to their biocompatibility, bioactiveness, and biodegradability, biopolymers such as collagen, alginate, silk fibroin, chitosan, alginate, cellulose, and starch are used in a variety of fields, including the food, biomedical, regeneration, agriculture, packaging, and pharmaceutical industries. The benefits of producing 3D-printed scaffolds are many, including the capacity to produce complicated geometries, porosity, and multicell coculture and to take growth factors into account. In particular, the additional production of biopolymers offers new options to produce 3D structures and materials with specialised patterns and properties. In the realm of tissue engineering and regenerative medicine (TERM), important progress has been accomplished; now, several state-of-the-art techniques are used to produce porous scaffolds for organ or tissue regeneration to be suited for tissue technology. Natural biopolymeric materials are often better suited for designing and manufacturing healing equipment than temporary implants and tissue regeneration materials owing to its appropriate properties and biocompatibility. The review focuses on the additive manufacturing of biopolymers with significant changes, advancements, trends, and developments in regenerative medicine and tissue engineering with potential applications.


2021 ◽  
Author(s):  
Joan Chang ◽  
Adam Pickard ◽  
Richa Garva ◽  
Yinhui Lu ◽  
Donald Gullberg ◽  
...  

abstractCollagen fibrils are the principal supporting elements in vertebrate tissues. They account for 25% of total protein mass, exhibit a broad range of size and organisation depending on tissue and stage of development, and can be under circadian clock control. Here we show that the remarkable dynamic pleomorphism of collagen fibrils is underpinned by a mechanism that distinguishes between collagen secretion and initiation of fibril assembly, at the plasma membrane. Collagen fibrillogenesis occurring at the plasma membrane requires vacuolar protein sorting (VPS) 33b (which is under circadian clock control), collagen-binding integrin-α11 subunit, and is reduced when endocytosis is inhibited. Fibroblasts lacking VPS33b secrete soluble collagen without assembling fibrils, whereas constitutive over-expression of VPS33b increases fibril number with loss of fibril rhythmicity. In conclusion, our study has identified the mechanism that switches secretion of collagen (without forming new fibrils) to new collagen fibril assembly, at the plasma membrane.


2021 ◽  
Vol 18 ◽  
Author(s):  
Simran Kaur ◽  
Soumava Santra

: Guar gum (GG) is a natural heteropolysaccharide. Due to its non-toxic, eco-friendly, and biodegradable nature, GG has found wide applications in many areas, in particular food, paper, textile, petroleum, and pharmaceutical industries. Therefore, GG is often called “Black Gold” as well. Due to the presence of hydroxyl groups, GG can be modified by various methods. The physical and biological properties of GG can be modulated by chemical modifications. In this manuscript, various methods for the chemical modifications of GG have been discussed according to the type of modifications. Mechanistic insights have also been provided whenever possible. In addition, potential applications of new GG derivatives have also been briefly mentioned.


Marine Drugs ◽  
2020 ◽  
Vol 18 (8) ◽  
pp. 416
Author(s):  
Yan Ma ◽  
Jie Li ◽  
Xin-Yue Zhang ◽  
Hao-Dong Ni ◽  
Feng-Biao Wang ◽  
...  

Alginate lyases play an important role in alginate oligosaccharides (AOS) preparation and brown seaweed processing. Many extracellular alginate lyases have been characterized to develop efficient degradation tools needed for industrial applications. However, few studies focusing on intracellular alginate lyases have been conducted. In this work, a novel intracellular alkaline alginate lyase Alyw202 from Vibrio sp. W2 was cloned, expressed and characterized. Secretory expression was performed in a food-grade host, Yarrowia lipolytica. Recombinant Alyw202 with a molecular weight of approximately 38.3 kDa exhibited the highest activity at 45 °C and more than 60% of the activity in a broad pH range of 3.0 to 10.0. Furthermore, Alyw202 showed remarkable metal ion-tolerance, NaCl independence and the capacity of degrading alginate into oligosaccharides of DP2-DP4. Due to the unique pH-stable and high salt-tolerant properties, Alyw202 has potential applications in the food and pharmaceutical industries.


Processes ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 1566
Author(s):  
Cynthia E. Lizárraga-Velázquez ◽  
Nayely Leyva-López ◽  
Crisantema Hernández ◽  
Erick Paul Gutiérrez-Grijalva ◽  
Jesús A. Salazar-Leyva ◽  
...  

The fruit, vegetable, legume, and cereal industries generate many wastes, representing an environmental pollution problem. However, these wastes are a rich source of antioxidant molecules such as terpenes, phenolic compounds, phytosterols, and bioactive peptides with potential applications mainly in the food and pharmaceutical industries, and they exhibit multiple biological properties including antidiabetic, anti-obesity, antihypertensive, anticancer, and antibacterial properties. The aforementioned has increased studies on the recovery of antioxidant compounds using green technologies to value plant waste, since they represent more efficient and sustainable processes. In this review, the main antioxidant molecules from plants are briefly described and the advantages and disadvantages of the use of conventional and green extraction technologies used for the recovery and optimization of the yield of antioxidant naturals are detailed; finally, recent studies on biological properties of antioxidant molecules extracted from plant waste are presented here.


1995 ◽  
Vol 401 ◽  
Author(s):  
M. E. Hawley ◽  
X. D. Wu ◽  
P. N. Arendt ◽  
C. D. Adams ◽  
M. F. Hundley ◽  
...  

AbstractThe properties encompassed by the family of complex metal oxides span the spectrum from superconductors to insulating ferroelectrics. Included in this family are the new colossal magnetoresistive perovskites with potential applications in advanced high density magnetic data storage devices based on single or multilayer thin films units of these materials fabricated by vapor phase deposition (PVD) methods. The realization of this potential requires solving basic thin film materials problems requiring understanding and controlling the growth of these materials. Toward this end, we have grown La0.7Ca0.3MnO3 and La0.7Sr0.3MnO3 on LaAlO3 single crystal substrates by pulsed laser and RF sputter deposition at temperatures from 500° C to 900° C and annealed at over 900° C for about 10 hours. The evolution of the microstructure of these films was studied by scanning probe microscopies and transmission electron microscopy (TEM).The results of SPM characterization showed that at the lower end of the growth temperature range, the as-grown films were polygranular with grain size increasing with temperature. The 500° C as-grown films appeared to be amorphous while the 750° C film grains were layered with terrace steps often one unit cell high. In contrast, films grown at 900° C consisted of coalesced islands with some 3-D surface crystals. After annealing, all films had coalesced into very large extended layered islands. The change in microstructure was reflected in a decreased resistivity of coalesced films over their unannealed granular precursors. Previous reported work on the growth of La0.84 Sr0.16MnO3 and La0.8Sr0 2CoO3 grown demonstrated the sensitivity of the microstructure to substrate and deposition conditions. Films grown on an “accidental” vicinal surface grew by a step flow mechanism.


1973 ◽  
Vol 19 (12) ◽  
pp. 1493-1499 ◽  
Author(s):  
Stanley D. Dunn ◽  
Robert V. Klucas

Glutamine amide–2-oxoglutarate aminotransferase NAD+ oxidoreductase (GOGAT), glutamine synthetase (GS), glutamate dehydrogenase (GD), and alanine dehydrogenase (AD) were studied in soybean root nodules. GS, GOGAT, and AD were present in bacteroids at levels that could account for ammonium assimilation, but GD activity was quite low. The total activities of GS and GD were higher in the cytosol than in the bacteroids by factors of 20 and 7, respectively, whereas GOGAT was not detected in the cytosol. GS (transferase activity) was inhibited by alanine, CTP, glycine, and tryptophan at 5 mM but was relatively unaffected by asparagine, aspartic acid, CMP, glucosamine, and histidine at 5 mM. GOGAT activity was unaffected by ATP, ADP, 8-hydroxyquinoline, and 1,10-phenanthroline but was inhibited by EDTA, citrate, and parachloromercuribenzoate. GOGAT activity (reductive amination) was also inhibited 97% by preincubation with 10−4 M azaserine for 30 min but GD activity was inhibited only 13%. The apparent Km values for NH4+ by AD was 7.4 × 10−3 M and by GD was 7.3 × 10−2 M while for glutamine by GOGAT it was 9.3 × 10−5 M. Activities and kinetic properties for these enzymes may suggest potential routes of nitrogen assimilation in vivo.


Sign in / Sign up

Export Citation Format

Share Document