scholarly journals Photopatternable solid electrolyte for integrable organic electrochemical transistors: operation and hysteresis

Author(s):  
Anton Weissbach ◽  
Lukas M. Bongartz ◽  
Matteo Cucchi ◽  
Hsin Tseng ◽  
Karl Leo ◽  
...  

Entirely photopatternable solid organic electrochemical transistors were fabricated and their excellent performance and pronounced hysteretic behavior studied in detail.

2015 ◽  
Vol 645-646 ◽  
pp. 1170-1174
Author(s):  
Jie Lin ◽  
Jian Lai Guo ◽  
Chang Liu ◽  
Hang Guo

A 3D all-solid-state thin film lithium-ion microbattery (TFLM) with inverted pyramid arrays is fabricated by microfabrication technology. Compared with 2D TFLMs, the effective area of this 3D TFLM increases more than 30%. The 3D TFLM prepared by magnetron sputtering is composed of LiCoO2 cathode, LiPON solid electrolyte, and copper doped SnOx anode. The 3D TFLM is tested by electrochemical measurements, and the results show that it has reliable capacity and excellent performance.


Author(s):  
G.F. Bastin ◽  
H.J.M. Heijligers ◽  
J.M. Dijkstra

For the calculation of X-ray intensities emitted by elements present in multi-layer systems it is vital to have an accurate knowledge of the x-ray ionization vs. mass-depth (ϕ(ρz)) curves as a function of accelerating voltage and atomic number of films and substrate. Once this knowledge is available the way is open to the analysis of thin films in which both the thicknesses as well as the compositions can usually be determined simultaneously.Our bulk matrix correction “PROZA” with its proven excellent performance for a wide variety of applications (e.g., ultra-light element analysis, extremes in accelerating voltage) has been used as the basis for the development of the software package discussed here. The PROZA program is based on our own modifications of the surface-centred Gaussian ϕ(ρz) model, originally introduced by Packwood and Brown. For its extension towards thin film applications it is required to know how the 4 Gaussian parameters α, β, γ and ϕ(o) for each element in each of the films are affected by the film thickness and the presence of other layers and the substrate.


2020 ◽  
Vol 140 (11) ◽  
pp. 305-308
Author(s):  
Tsuyoshi Sakai ◽  
Satoko Takase ◽  
Youichi Shimizu
Keyword(s):  

2019 ◽  
Author(s):  
Florian Strauss ◽  
Lea de Biasi ◽  
A-Young Kim ◽  
Jonas Hertle ◽  
Simon Schweidler ◽  
...  

Measures to improve the cycling performance and stability of bulk-type all-solid-state batteries (SSBs) are currently being developed with the goal of substituting conventional Li-ion battery (LIB) technology. As known from liquid electrolyte based LIBs, layered oxide cathode materials undergo volume changes upon (de)lithiation, causing mechanical degradation due to particle fracture, among others. Unlike solid electrolytes, liquid electrolytes are somewhat capable of accommodating morphological changes. In SSBs, the rigidity of the materials used typically leads to adverse contact loss at the interfaces of cathode material and solid electrolyte during cycling. Hence, designing zero- or low-strain electrode materials for application in next-generation SSBs is desirable. In the present work, we report on novel Co-rich NCMs, NCM361 (60% Co) and NCM271 (70% Co), showing minor volume changes up to 4.5 V vs Li<sup>+</sup>/Li, as determined by <i>operando</i> X-ray diffraction and pressure measurements of LIB pouch and pelletized SSB cells, respectively. Both cathode materials exhibit good cycling performance when incorporated into SSB cells using argyrodite Li<sub>6</sub>PS<sub>5</sub>Cl solid electrolyte, albeit their morphology and secondary particle size have not yet been optimized.


2019 ◽  
Author(s):  
Florian Strauss ◽  
Lea de Biasi ◽  
A-Young Kim ◽  
Jonas Hertle ◽  
Simon Schweidler ◽  
...  

Measures to improve the cycling performance and stability of bulk-type all-solid-state batteries (SSBs) are currently being developed with the goal of substituting conventional Li-ion battery (LIB) technology. As known from liquid electrolyte based LIBs, layered oxide cathode materials undergo volume changes upon (de)lithiation, causing mechanical degradation due to particle fracture, among others. Unlike solid electrolytes, liquid electrolytes are somewhat capable of accommodating morphological changes. In SSBs, the rigidity of the materials used typically leads to adverse contact loss at the interfaces of cathode material and solid electrolyte during cycling. Hence, designing zero- or low-strain electrode materials for application in next-generation SSBs is desirable. In the present work, we report on novel Co-rich NCMs, NCM361 (60% Co) and NCM271 (70% Co), showing minor volume changes up to 4.5 V vs Li<sup>+</sup>/Li, as determined by <i>operando</i> X-ray diffraction and pressure measurements of LIB pouch and pelletized SSB cells, respectively. Both cathode materials exhibit good cycling performance when incorporated into SSB cells using argyrodite Li<sub>6</sub>PS<sub>5</sub>Cl solid electrolyte, albeit their morphology and secondary particle size have not yet been optimized.


2019 ◽  
Author(s):  
Valentin Smeets ◽  
Ludivine van den Biggelaar ◽  
Tarek Barakat ◽  
Eric M. Gaigneaux ◽  
Damien Debecker

Self-standing macrocellular titanosilicate monolith foams are obtained using a one-pot sol-gel route and show excellent performance in the epoxidation of cyclohexene. Thanks to the High Internal Phase Emulsion (HIPE) templating method, the materials feature a high void fraction, a hierarchically porous texture and good mechanical strength. Highly dispersed Ti species can be incorporated in tetrahedral coordination the silica matrix. These characteristics allow the obtained ‘SiTi(HIPE)’ materials to reach high catalytic turnover in the epoxidation of cyclohexene. The monoliths can advantageously be used to run the reaction in continuous flow mode.<br>


2018 ◽  
Vol 60 (4) ◽  
pp. 378-386
Author(s):  
Qingfang Niu ◽  
Jia Wan ◽  
Tieying Li ◽  
Y. Frank Chen

Alloy Digest ◽  
2015 ◽  
Vol 64 (8) ◽  

Abstract LDX 2101 is a low-alloyed duplex stainless designed as a general-purpose duplex stainless steel. Designed for excellent performance at lower cost. This datasheet provides information on composition, physical properties, microstructure, hardness, and tensile properties as well as fatigue. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-1220. Producer or source: Outokumpu Stainless AB, Avesta Research Centre.


Alloy Digest ◽  
1975 ◽  
Vol 24 (1) ◽  

Abstract FORMALOY is a high-strength, high-purity zinc-base alloy with excellent performance in dies for forming sheet metal. It has a fine, dense grain structure which contributes markedly to its good toughness, excellent machinability and ability to develop a high polish. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive strength as well as fracture toughness. It also includes information on corrosion resistance as well as casting, forming, heat treating, machining, and joining. Filing Code: Zn-17. Producer or source: Federated Metals Corporation, ASARCO Inc..


Sign in / Sign up

Export Citation Format

Share Document