Recent progress in pyrazinoacenes containing nonbenzenoid rings: synthesis, properties and applications

Author(s):  
Fangyuan Kang ◽  
Jie Yang ◽  
Qichun Zhang

Azaacenes have emerged as a new and important class of organic materials, and their synthetic strategies and applications as organic semiconductors have gained great progress in recent years. Generally, adopting...

2021 ◽  
Vol 42 (7) ◽  
pp. 2170021
Author(s):  
Devthade Vidyasagar ◽  
Toshali Bhoyar ◽  
Gurwinder Singh ◽  
Ajayan Vinu

2016 ◽  
Vol 45 (1) ◽  
pp. 63-82 ◽  
Author(s):  
Zhanxi Fan ◽  
Hua Zhang

In this review, the recent progress of crystal phase-controlled synthesis, properties and applications of noble metal nanomaterials is systematically introduced.


Author(s):  
Shaoqiang Dong ◽  
Zhen Li

In last decades, open-shell organic materials have attracted scientists’ great attention for their new chemical and physical properties, as well as their possible applications in new generation of organic light-emitting...


2019 ◽  
Vol 5 (5) ◽  
pp. eaav2336 ◽  
Author(s):  
A. E. London ◽  
H. Chen ◽  
M. A. Sabuj ◽  
J. Tropp ◽  
M. Saghayezhian ◽  
...  

Interest in high-spin organic materials is driven by opportunities to enable far-reaching fundamental science and develop technologies that integrate light element spin, magnetic, and quantum functionalities. Although extensively studied, the intrinsic instability of these materials complicates synthesis and precludes an understanding of how fundamental properties associated with the nature of the chemical bond and electron pairing in organic materials systems manifest in practical applications. Here, we demonstrate a conjugated polymer semiconductor, based on alternating cyclopentadithiophene and thiadiazoloquinoxaline units, that is a ground-state triplet in its neutral form. Electron paramagnetic resonance and magnetic susceptibility measurements are consistent with a high-to-low spin energy gap of 9.30 × 10−3 kcal mol−1. The strongly correlated electronic structure, very narrow bandgap, intramolecular ferromagnetic coupling, high electrical conductivity, solution processability, and robust stability open access to a broad variety of technologically relevant applications once thought of as beyond the current scope of organic semiconductors.


2005 ◽  
Vol 20 (12) ◽  
pp. 3167-3179 ◽  
Author(s):  
Sophie E. Gledhill ◽  
Brian Scott ◽  
Brian A. Gregg

Organic photovoltaic devices are poised to fill the low-cost, low power niche in the solar cell market. Recently measured efficiencies of solid-state organic cells are nudging 5% while Grätzel’s more established dye-sensitized solar cell technology is more than double this. A fundamental understanding of the excitonic nature of organic materials is an essential backbone for device engineering. Bound electron-hole pairs, “excitons,” are formed in organic semiconductors on photo-absorption. In the organic solar cell, the exciton must diffuse to the donor–accepter interface for simultaneous charge generation and separation. This interface is critical as the concentration of charge carriers is high and recombination here is higher than in the bulk. Nanostructured engineering of the interface has been utilized to maximize organic materials properties, namely to compensate the poor exciton diffusion lengths and lower mobilities. Excitonic solar cells have different limitations on their open-circuit photo-voltages due to these high interfacial charge carrier concentrations, and their behavior cannot be interpreted as if they were conventional solar cells. This article briefly reviews some of the differences between excitonic organic solar cells and conventional inorganic solar cells and highlights some of the technical strategies used in this rapidly progressing field, whose ultimate aim is for organic solar cells to be a commercial reality.


1999 ◽  
Vol 561 ◽  
Author(s):  
R.C. Advincula ◽  
S. Inaoka ◽  
M. Park ◽  
D. Phillips ◽  
D.M. Shin

ABSTRACTIn this report, we describe our initial synthesis and characterization of mono-functional and bi-functional dibromoalkyl oligothiophenes to achieve amphiphilicity and telechelic functionality. Oligothiophenes are an important class of organic materials for opto-electronic devices and display applications. We have mono-functionalized oligothiophenes by the synthesis of a quinquethiophene bromoalkyl derivative. A bi-functional sexithiophene was derived primarily by the symmetrical coupling of terthiophene derivatives. Both were synthesized using Grignard coupling and lithiation reaction methodologies. UV-Vis, IR, NMR, MALDI-TOF-MS, and DSC confirmed the structure and physical properties of the oligomers. In addition, we have also synthesized an amphiphilic diamine derivative from the reaction of hexamethylenediamine with a bromoalkyl terthiophene derivative. Using photoluminescence, the photophysical properties of the oligomers were found to be that of typical oligothiophenes. Processing as ultrathin films for devices is currently being investigated.


MRS Bulletin ◽  
2009 ◽  
Vol 34 (11) ◽  
pp. 832-837 ◽  
Author(s):  
S.K. Streiffer ◽  
D.D. Fong

AbstractOver decades of effort, investigations of the intrinsic phase transition behavior of nanoscale ferroelectric structures have been greatly complicated by materials processing variations and by the common and uncontrolled occurrence of spacecharge, which interacts directly with the polarization and can obscure fundamental behavior. These challenges have largely been overcome, and great progress in understanding the details of this class of phase transitions has been made, largely based on advances in the growth of high-quality, epitaxial ferroelectric films and in the theory and simulation of ferroelectricity. Here we will discuss recent progress in understanding the ferroelectric phase transition in a particular class of model systems: nanoscale perovskite thin-film heterostructures. The outlook for ferroelectric technology based on these results is promising, and extensions to laterally confined nanostructures will be described.


2020 ◽  
Vol 11 (37) ◽  
pp. 5937-5954 ◽  
Author(s):  
Dennis Ndaya ◽  
Reuben Bosire ◽  
Samiksha Vaidya ◽  
Rajeswari M. Kasi

This review describes recent progress made in designing stimuli-responsive, functional, side-chain, end-on mesogen attached liquid crystalline polymers (LCPs).


2020 ◽  
Vol 7 (19) ◽  
pp. 3001-3026 ◽  
Author(s):  
Cheng Zhang ◽  
Zongrui Wang ◽  
Hua Li ◽  
Jianmei Lu ◽  
Qichun Zhang

The recent synthetic strategies and significant applications of TBNDA and their derivatives as promising building blocks to construct π-expanded semiconductors have been carefully summarized in this review.


Sign in / Sign up

Export Citation Format

Share Document