scholarly journals Recent progress in the usage of tetrabromo-substituted naphthalenetetracarboxylic dianhydride as a building block to construct organic semiconductors and their applications

2020 ◽  
Vol 7 (19) ◽  
pp. 3001-3026 ◽  
Author(s):  
Cheng Zhang ◽  
Zongrui Wang ◽  
Hua Li ◽  
Jianmei Lu ◽  
Qichun Zhang

The recent synthetic strategies and significant applications of TBNDA and their derivatives as promising building blocks to construct π-expanded semiconductors have been carefully summarized in this review.

2020 ◽  
Vol 24 (19) ◽  
pp. 2256-2271
Author(s):  
Dau Xuan Duc

: Benzo[b]thiophenes are aromatic heterocyclic compounds containing benzene and thiophene rings. This class of heterocycles is present in a large number of natural and non-natural compounds. Benzo[b]thiophene derivatives have a broad range of applications in medicinal chemistry such as antimicrobial, anticancer, antioxidant, anti-HIV and antiinflammatory activities. The use of benzo[b]thiophene derivatives in other fields has also been reported. Various benzo[b]thiophenes compounds have been employed as organic photoelectric materials, while several benzo[b]thiophenes have been used as organic semiconductors. Benzo[b]thiophenes have also been used as building blocks or intermediates for the synthesis of pharmaceutically important molecules. : Due to such a wide range of applicability, the synthesis of benzo[b]thiophene derivatives has attracted intensive research. Numerous mild and efficient approaches for the synthesis of benzo[b]thiophenes have been developed over the years. Different catalysts and substrates have been applied for benzo[b]thiophene synthesis. This review will focus on the studies in the construction of benzo[b]thiophene skeleton, which date back from 2012.


Author(s):  
Dorian Bader ◽  
Johannes Fröhlich ◽  
Paul Kautny

The facile preparation of three regioisomeric thienopyrrolocarbazoles applying a convenient C-H activation approach is presented. Derived from indolo[3,2,1-<i>jk</i>]carbazole, the incorporation of thiophene into the triarylamine framework significantly impacted the molecular properties of the parent scaffold. The developed thienopyrrolocarbazoles enrich the family of triarylamine donors and constitute a novel building block for functional organic materials.


2019 ◽  
Author(s):  
Dorian Bader ◽  
Johannes Fröhlich ◽  
Paul Kautny

The facile preparation of three regioisomeric thienopyrrolocarbazoles applying a convenient C-H activation approach is presented. Derived from indolo[3,2,1-<i>jk</i>]carbazole, the incorporation of thiophene into the triarylamine framework significantly impacted the molecular properties of the parent scaffold. The developed thienopyrrolocarbazoles enrich the family of triarylamine donors and constitute a novel building block for functional organic materials.


2020 ◽  
Vol 17 ◽  
Author(s):  
Mohsen A.-M. Gomaa ◽  
Huda A. Ali

Background : The reactivity of 4-(dicyanomethylene)-3-methyl-l-phenyl-2-pyrazoline-5-one DCNP 1 and its derivatives makes it valuable as a building block for the synthesis of heterocyclic compounds like pyrazolo-imidazoles, - thiazoles, spiropyridines, spiropyrroles, spiropyrans and others. As a number of publications have reported on the reactivity of DCNP and its derivatives, we compiled some features of this interesting molecule. Objective: This article aims to review the preparation of DCNP, its reactivity and application in heterocyclic and dyes synthesis. Conclusion: In this review we have provided an overview of recent progress in the chemistry of DCNP and its significance in synthesis of various classes of heterocyclic compounds and dyes. The unique reactivity of DCNP offers unprecedentedly mild reaction conditions for the generation of versatile cynomethylene dyes from a wide range of precursors including amines, α-aminocarboxylic acids, their esters, phenols, malononitriles and azacrown ethers. We anticipate that more innovative transformations involving DCNP will continue to emerge in the near future.


Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 118
Author(s):  
Jean-Laurent Pouchairet ◽  
Carole Rossi

For the past two decades, many research groups have investigated new methods for reducing the size and cost of safe and arm-fire systems, while also improving their safety and reliability, through batch processing. Simultaneously, micro- and nanotechnology advancements regarding nanothermite materials have enabled the production of a key technological building block: pyrotechnical microsystems (pyroMEMS). This building block simply consists of microscale electric initiators with a thin thermite layer as the ignition charge. This microscale to millimeter-scale addressable pyroMEMS enables the integration of intelligence into centimeter-scale pyrotechnical systems. To illustrate this technological evolution, we hereby present the development of a smart infrared (IR) electronically controllable flare consisting of three distinct components: (1) a controllable pyrotechnical ejection block comprising three independently addressable small-scale propellers, all integrated into a one-piece molded and interconnected device, (2) a terminal function block comprising a structured IR pyrotechnical loaf coupled with a microinitiation stage integrating low-energy addressable pyroMEMS, and (3) a connected, autonomous, STANAG 4187 compliant, electronic sensor arming and firing block.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 720
Author(s):  
Satomi Niwayama

Symmetric organic compounds are generally obtained inexpensively, and therefore they can be attractive building blocks for the total synthesis of various pharmaceuticals and natural products. The drawback is that discriminating the identical functional groups in the symmetric compounds is difficult. Water is the most environmentally benign and inexpensive solvent. However, successful organic reactions in water are rather limited due to the hydrophobicity of organic compounds in general. Therefore, desymmetrization reactions in aqueous media are expected to offer versatile strategies for the synthesis of a variety of significant organic compounds. This review focuses on the recent progress of desymmetrization reactions of symmetric organic compounds in aqueous media without utilizing enzymes.


Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 503
Author(s):  
Morten Gundersen ◽  
Guro Austli ◽  
Sigrid Løvland ◽  
Mari Hansen ◽  
Mari Rødseth ◽  
...  

Sustainable methods for producing enantiopure drugs have been developed. Chlorohydrins as building blocks for several β-blockers have been synthesized in high enantiomeric purity by chemo-enzymatic methods. The yield of the chlorohydrins increased by the use of catalytic amount of base. The reason for this was found to be the reduced formation of the dimeric by-products compared to the use of higher concentration of the base. An overall reduction of reagents and reaction time was also obtained compared to our previously reported data of similar compounds. The enantiomers of the chlorohydrin building blocks were obtained by kinetic resolution of the racemate in transesterification reactions catalyzed by Candida antarctica Lipase B (CALB). Optical rotations confirmed the absolute configuration of the enantiopure drugs. The β-blocker (S)-practolol ((S)-N-(4-(2-hydroxy-3-(isopropylamino)propoxy)phenyl)acetamide) was synthesized with 96% enantiomeric excess (ee) from the chlorohydrin (R)-N-(4-(3-chloro-2 hydroxypropoxy)phenyl)acetamide, which was produced in 97% ee and with 27% yield. Racemic building block 1-((1H-indol-4-yl)oxy)-3-chloropropan-2-ol for the β-blocker pindolol was produced in 53% yield and (R)-1-((1H-indol-4-yl)oxy)-3-chloropropan-2-ol was produced in 92% ee. The chlorohydrin 7-(3-chloro-2-hydroxypropoxy)-3,4-dihydroquinolin-2(1H)-one, a building block for a derivative of carteolol was produced in 77% yield. (R)-7-(3-Chloro-2-hydroxypropoxy)-3,4-dihydroquinolin-2(1H)-one was obtained in 96% ee. The S-enantiomer of this carteolol derivative was produced in 97% ee in 87% yield. Racemic building block 5-(3-chloro-2-hydroxypropoxy)-3,4-dihydroquinolin-2(1H)-one, building block for the drug carteolol, was also produced in 53% yield, with 96% ee of the R-chlorohydrin (R)-5-(3-chloro-2-hydroxypropoxy)-3,4-dihydroquinolin-2(1H)-one. (S)-Carteolol was produced in 96% ee with low yield, which easily can be improved.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ling Xin ◽  
Xiaoyang Duan ◽  
Na Liu

AbstractIn living organisms, proteins are organized prevalently through a self-association mechanism to form dimers and oligomers, which often confer new functions at the intermolecular interfaces. Despite the progress on DNA-assembled artificial systems, endeavors have been largely paid to achieve monomeric nanostructures that mimic motor proteins for a single type of motion. Here, we demonstrate a DNA-assembled building block with rotary and walking modules, which can introduce new motion through dimerization and oligomerization. The building block is a chiral system, comprising two interacting gold nanorods to perform rotation and walking, respectively. Through dimerization, two building blocks can form a dimer to yield coordinated sliding. Further oligomerization leads to higher-order structures, containing alternating rotation and sliding dimer interfaces to impose structural twisting. Our hierarchical assembly scheme offers a design blueprint to construct DNA-assembled advanced architectures with high degrees of freedom to tailor the optical responses and regulate multi-motion on the nanoscale.


2021 ◽  
Author(s):  
Xinyao Liu ◽  
Yunling Liu

ZMOFs are a subset of MOFs that exhibit zeolite-like topologies. Using molecular building block strategy, many ZMOFs with high stability and excellent performance can be rationally designed and synthesized using different secondary building units.


2008 ◽  
Vol 105 (40) ◽  
pp. 15275-15280 ◽  
Author(s):  
Ian R. Wheeldon ◽  
Joshua W. Gallaway ◽  
Scott Calabrese Barton ◽  
Scott Banta

Here, we present two bifunctional protein building blocks that coassemble to form a bioelectrocatalytic hydrogel that catalyzes the reduction of dioxygen to water. One building block, a metallopolypeptide based on a previously designed triblock polypeptide, is electron-conducting. A second building block is a chimera of artificial α-helical leucine zipper and random coil domains fused to a polyphenol oxidase, small laccase (SLAC). The metallopolypeptide has a helix–random-helix secondary structure and forms a hydrogel via tetrameric coiled coils. The helical and random domains are identical to those fused to the polyphenol oxidase. Electron-conducting functionality is derived from the divalent attachment of an osmium bis-bipyrdine complex to histidine residues within the peptide. Attachment of the osmium moiety is demonstrated by mass spectroscopy (MS-MALDI-TOF) and cyclic voltammetry. The structure and function of the α-helical domains are confirmed by circular dichroism spectroscopy and by rheological measurements. The metallopolypeptide shows the ability to make electrical contact to a solid-state electrode and to the redox centers of modified SLAC. Neat samples of the modified SLAC form hydrogels, indicating that the fused α-helical domain functions as a physical cross-linker. The fusion does not disrupt dimer formation, a necessity for catalytic activity. Mixtures of the two building blocks coassemble to form a continuous supramolecular hydrogel that, when polarized, generates a catalytic current in the presence of oxygen. The specific application of the system is a biofuel cell cathode, but this protein-engineering approach to advanced functional hydrogel design is general and broadly applicable to biocatalytic, biosensing, and tissue-engineering applications.


Sign in / Sign up

Export Citation Format

Share Document