Semitransparent Organic Solar Cells: From Molecular Design to Structure-Performance Relationships

Author(s):  
Ganesh D Sharma ◽  
Kanupriya Khandelwal ◽  
Amaresh Mishra ◽  
Subhayan Biswas

Organic solar cells (OSC) have drawn tremendous interest because of their potential for low-cost solution processing and color tunability. OSCs with bulk-heterojunction structures offer an attractive pathway to efficiently utilize...

2021 ◽  
Author(s):  
Junzhen Ren ◽  
Pengqing Bi ◽  
Jianqi Zhang ◽  
Jiao Liu ◽  
Jingwen Wang ◽  
...  

Abstract Developing photovoltaic materials with simple chemical structures and easy synthesis still remains a major challenge in the industrialization process of organic solar cells (OSCs). Herein, an ester substituted poly(thiophene vinylene) derivative, PTVT-T, was designed and synthesized in very few steps by adopting commercially available raw materials. The ester groups on the thiophene units enable PTVT-T to have a planar and stable conformation. Moreover, PTVT-T presents a wide absorption band and strong aggregation effect in solution, which are the key characteristics needed to realize high performance in non-fullerene-acceptor (NFA)-based OSCs. We then prepared OSCs by blending PTVT-T with three representative fullerene- and NF-based acceptors, PC71BM, IT-4F and BTP-eC9. It was found that PTVT-T can work well with all the acceptors, showing great potential to match new emerging NFAs. Particularly, a remarkable power conversion efficiency of 16.20% is achieved in a PTVT-T:BTP-eC9-based device, which is the highest value among the counterparts based on PTV derivatives. This work demonstrates that PTVT-T shows great potential for the future commercialization of OSCs.


Author(s):  
Dorota Zając ◽  
Dariusz Przybylski ◽  
Jadwiga Sołoducho

AbstractDeveloping effective and low‐cost organic semiconductors is an opportunity for the development of organic solar cells (OPV). Herein, we report the molecular design, synthesis and characterization of two molecules with D–A–D–A configuration: 2-cyano-3-(5-(8-(3,4-ethylenodioxythiophen-5-yl)-2,3-diphenylquinoxalin-5-yl)thiophen-2-yl)acrylic acid (6) and 2-cyano-3-(5-(2,3-diphenyl-8-(thiophen-2-yl)quinoxalin-5-yl)thiophen-2-yl)acrylic acid (7). Moreover, we investigated the structural, theoretical and optical properties. The distribution of HOMO/LUMO orbitals and the values of the ionization potential indicate good semiconducting properties of the compounds and that they can be a bipolar material. Also, the optical study show good absorption in visible light (λabs 380–550 nm). We investigate the theoretical optoelectronic properties of obtained compounds as potential materials for solar cells.


2020 ◽  
Vol 21 (21) ◽  
pp. 8085
Author(s):  
Giacomo Forti ◽  
Andrea Nitti ◽  
Peshawa Osw ◽  
Gabriele Bianchi ◽  
Riccardo Po ◽  
...  

The introduction of the IDIC/ITIC families of non-fullerene acceptors has boosted the photovoltaic performances of bulk-heterojunction organic solar cells. The fine tuning of the photophysical, morphological and processability properties with the aim of reaching higher and higher photocurrent efficiencies has prompted uninterrupted worldwide research on these peculiar families of organic compounds. The main strategies for the modification of IDIC/ITIC compounds, described in several contributions published in the past few years, can be summarized and classified into core modification strategies and end-capping group modification strategies. In this review, we analyze the more recent advances in this field (last two years), and we focus our attention on the molecular design proposed to increase photovoltaic performance with the aim of rationalizing the general properties of these families of non-fullerene acceptors.


2021 ◽  
Author(s):  
Peiyao Xue ◽  
Pei Cheng ◽  
Ray P.S. Han ◽  
Xiaowei Zhan

Organic solar cells (OSCs) based on a bulk heterojunction structure exhibit inherent advantages, such as low cost, light weight, mechanical flexibility, easy processing, and they are emerging as a potential...


2005 ◽  
Vol 20 (12) ◽  
pp. 3224-3233 ◽  
Author(s):  
G. Dennler ◽  
C. Lungenschmied ◽  
H. Neugebauer ◽  
N.S. Sariciftci ◽  
A. Labouret

Organic solar cells based on conjugated polymer:fullerene blends show nowadays efficiencies above 4%. After briefly presenting the science of bulk-heterojunction solar cells, we report herein a shelf lifetime study performed by encapsulating the cells in a flexible and transparent gas barrier material. This method allows lifetimes as reported for glass encapsulation. Moreover, we propose a new approach to pattern organic solar cells and design large-scale modules. This technique, based on selective Nd:yttrium aluminum garnet (YAG) laser etching, potentially enables low-cost, high-speed roll-to-roll operation.


2004 ◽  
Vol 19 (7) ◽  
pp. 1990-1994 ◽  
Author(s):  
Sandeep Kumar ◽  
Thomas Nann

Hybrid bulk heterojunction composites are promising material for low-cost organic solar cells. Fundamental measurements with CdTe nanocrystal/MEH-PPV poly [2-methoxy-5-(2′-ethyl-hexyloxy)-1,4-phenylene vinylene] composites and the first realization of a solar cell based on this material are presented. Optical and electrochemical properties are discussed as well as the current voltage characteristic of the resulting cell. It was found, that CdTe nanocrystal/MEH-PPV composites are well suited for an organic solar cell, even though the technological realization needs to be improved.


Soft Matter ◽  
2020 ◽  
Vol 16 (29) ◽  
pp. 6743-6751
Author(s):  
Joydeep Munshi ◽  
TeYu Chien ◽  
Wei Chen ◽  
Ganesh Balasubramanian

The effect of solution processing conditions on the elasto-morphology of a bulk heterojunction layer reveals a trade-off between thermo-mechanical stability and performance in organic solar cells.


2019 ◽  
Vol 16 (3) ◽  
pp. 236-243 ◽  
Author(s):  
Hui Zhang ◽  
Yibing Ma ◽  
Youyi Sun ◽  
Jialei Liu ◽  
Yaqing Liu ◽  
...  

In this review, small-molecule donors for application in organic solar cells reported in the last three years are highlighted. Especially, the effect of donor molecular structure on power conversion efficiency of organic solar cells is reported in detail. Furthermore, the mechanism is proposed and discussed for explaining the relationship between structure and power conversion efficiency. These results and discussions draw some rules for rational donor molecular design, which is very important for further improving the power conversion efficiency of organic solar cells based on the small-molecule donor.


Solar RRL ◽  
2021 ◽  
Author(s):  
Jiage Song ◽  
Fangfang Cai ◽  
Can Zhu ◽  
Honggang Chen ◽  
Qingya Wei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document