281. The constitution of pectic acid. Part III. Hydrolysis of the methyl ester of methylated pectic acid and the isolation of the methyl ester of 2 : 3-dimethyl β-methylgalactopyruronoside

1940 ◽  
Vol 0 (0) ◽  
pp. 1506-1511 ◽  
Author(s):  
S. Luckett ◽  
F. Smith
1963 ◽  
Vol 46 (2) ◽  
pp. 341-343
Author(s):  
M Alice Brown ◽  
James R Woodward ◽  
Floyd DeEds

Abstract The amount of naturally occurring methanol in fruit must be known so that the quantity left as fumigation residue can be determined. In a study of methanol content of raisins, which had given inconsistent results, the raisins were subjected to different conditions of treatment immediately prior to methanol determination. Conditions that favored pectin esterase activity gave higher values for methanol content than conditions known to inactivate enzymes. Evidence was also obtained that both chemical and enzymic hydrolysis of methyl ester groups of pectic materials occur during analysis.


2013 ◽  
Vol 69 (11) ◽  
pp. 1225-1228 ◽  
Author(s):  
Sara Wyss ◽  
Irmgard A. Werner ◽  
W. Bernd Schweizer ◽  
Simon M. Ametamey ◽  
Selena Milicevic Sephton

Hydrolysis of the methyl ester (±)-threo-methyl phenidate afforded the free acid in 40% yield,viz.(±)-threo-ritalinic acid, C13H17NO2. Hydrolysis and subsequent crystallization were accomplished at pH values between 5 and 7 to yield colourless prisms which were analysed by X-ray crystallography. Crystals of (±)-threo-ritalinic acid belong to theP21/nspace group and form intermolecular hydrogen bonds. An antiperiplanar disposition of the H atoms of the (HOOC—)CH—CHpygroup (py is pyridine) was found in both the solid (diffraction analysis) and solution state (NMR analysis). It was also determined that (±)-threo-ritalinic acid conforms to the minimization of negativegauche+–gauche−interactions.


1966 ◽  
Vol 44 (11) ◽  
pp. 1275-1282 ◽  
Author(s):  
V. Zitko ◽  
C. T. Bishop

Fractions of sunflower pectic acid containing 89.8%, 94.2%, and 91.4% of D-galacturonic acid were carboxyl reduced as their methyl or ethylene glycol esters by potassium borohydride. Critical assessment of the effects of three different solvents (water, 80% aqueous dimethyl sulfoxide, and 80% aqueous methanol) on the efficiency of reduction showed that the latter solvent was best. The reductions caused a decrease in the degree of polymerization from 270 to 21. Measurement of the rates of hydrolysis of partially reduced pectic acids containing 90%, 41.6%, 19.9%, 11.0%, and 0.65% of D-galacturonic acid showed that the rate of hydrolysis was directly related to the proportion of galacturonosidic linkages present. Methylation and hydrolysis of the carboxyl-reduced pectic acid fractions yielded 2,3,4,6-tetra-O-methyl-D-galactose and 2,3,6-tri-O-methyl-D-galactose in an approximate molar ratio of 1:20. Results of the periodate oxidation of the carboxyl-reduced pectic acid supported the conclusion inferred from the methylation results that the pectic acid was a linear polymer of 1 → 4 linked α-D-galacturonic acid units.


1974 ◽  
Vol 141 (2) ◽  
pp. 365-381 ◽  
Author(s):  
Christopher W. Wharton ◽  
Athel Cornish-Bowden ◽  
Keith Brocklehurst ◽  
Eric M. Crook

1. N-Benzoyl-l-serine methyl ester was synthesized and evaluated as a substrate for bromelain (EC 3.4.22.4) and for papain (EC 3.4.22.2). 2. For the bromelain-catalysed hydrolysis at pH7.0, plots of [S0]/vi (initial substrate concn./initial velocity) versus [S0] are markedly curved, concave downwards. 3. Analysis by lattice nomography of a modifier kinetic mechanism in which the modifier is substrate reveals that concave-down [S0]/vi versus [S0] plots can arise when the ratio of the rate constants that characterize the breakdown of the binary (ES) and ternary (SES) complexes is either less than or greater than 1. In the latter case, there are severe restrictions on the values that may be taken by the ratio of the dissociation constants of the productive and non-productive binary complexes. 4. Concave-down [S0]/vi versus [S0] plots cannot arise from compulsory substrate activation. 5. Computational methods, based on function minimization, for determination of the apparent parameters that characterize a non-compulsory substrate-activated catalysis are described. 6. In an attempt to interpret the catalysis by bromelain of the hydrolysis of N-benzoyl-l-serine methyl ester in terms of substrate activation, the general substrate-activation model was simplified to one in which only one binary ES complex (that which gives rise directly to products) can form. 7. In terms of this model, the bromelain-catalysed hydrolysis of N-benzoyl-l-serine methyl ester at pH7.0, I=0.1 and 25°C is characterized by Km1 (the dissociation constant of ES)=1.22±0.73mm, k (the rate constant for the breakdown of ES to E+products, P)=1.57×10-2±0.32×10-2s-1, Ka2 (the dissociation constant that characterizes the breakdown of SES to ES and S)=0.38±0.06m, and k′ (the rate constant for the breakdown of SES to E+P+S)=0.45±0.04s-1. 8. These parameters are compared with those in the literature that characterize the bromelain-catalysed hydrolysis of α-N-benzoyl-l-arginine ethyl ester and of α-N-benzoyl-l-arginine amide; Km1 and k for the serine ester hydrolysis are somewhat similar to Km and kcat. for the arginine amide hydrolysis and Kas and k′ for the serine ester hydrolysis are somewhat similar to Km and kcat. for the arginine ester hydrolysis. 9. A previous interpretation of the inter-relationships of the values of kcat. and Km for the bromelain-catalysed hydrolysis of the arginine ester and amide substrates is discussed critically and an alternative interpretation involving substantial non-productive binding of the arginine amide substrate to bromelain is suggested. 10. The parameters for the bromelain-catalysed hydrolysis of the serine ester substrate are tentatively interpreted in terms of non-productive binding in the binary complex and a decrease of this type of binding by ternary complex-formation. 11. The Michaelis parameters for the papain-catalysed hydrolysis of the serine ester substrate (Km=52±4mm, kcat.=2.80±0.1s-1 at pH7.0, I=0.1, 25.0°C) are similar to those for the papain-catalysed hydrolysis of methyl hippurate. 12. Urea and guanidine hydrochloride at concentrations of 1m have only small effects on the kinetic parameters for the hydrolysis of the serine ester substrate catalysed by bromelain and by papain.


1959 ◽  
Vol 37 (1) ◽  
pp. 1361-1366 ◽  
Author(s):  
Ricardo H. Landaburu ◽  
Walter H. Seegers

Purified thrombin-C loses its clotting power upon acetylation. The thrombin-E which is produced during the acetylation has approximately twice the proteolytic activity as the original thrombin-C. Evidently amino groups are not necessary to have thrombin-E activity, but if o-acyl groups are also produced the enzyme does not hydrolyze p-toluenesulphonylarginine methyl ester (TAMe). The activity can be recovered by spontaneous hydrolysis of the o-acyl groups at pH 8.5. Thrombin-E does not activate fibrinogen, but does lyse fibrin. The optimum pH with TAMe as substrate is 8.8. It may be that thrombin-C is a dimer of the basic structure in thrombin-E.


1962 ◽  
Vol 40 (1) ◽  
pp. 1203-1212 ◽  
Author(s):  
Phyllis S. Roberts

A 50% glycerol medium affected the activation of plasminogen by streptokinase (SK) and the activity of plasmin (formed by glycerol incubation) on p-toluene-sulphonyl-L-arginine methyl ester (TAMe) in the following ways:(1) TAMe interfered strongly with the activation of plasminogen by SK in a glycerol medium but not in a water medium under the same conditions.(2) SK inhibited the action of plasmin on TAMe in a glycerol medium, but in a water medium SK increased the rate of hydrolysis of TAMe, the extent of the increase depending upon pH.(3) Phosphate buffer inhibited the activation of plasminogen by SK in a glycerol medium but not in a water medium. In the glycerol medium a lag period in the formation of enzyme was found, particularly noted with a phosphate buffer, and the lag period increased with increasing concentration of the buffer.(4) Phosphate buffer inhibited the action of plasmin on TAMe in a glycerol medium but not in a water medium.Mechanisms of activation of plasminogen by SK are discussed. The data presented support the postulate that a reaction takes place between plasmin and SK to form an enzyme called "activator".


Sign in / Sign up

Export Citation Format

Share Document