scholarly journals Characterization of monocot and dicot plant S-adenosyl-l-methionine decarboxylase gene families including identification in the mRNA of a highly conserved pair of upstream overlapping open reading frames

2001 ◽  
Vol 353 (2) ◽  
pp. 403 ◽  
Author(s):  
Marina FRANCESCHETTI ◽  
Colin HANFREY ◽  
Sonia SCARAMAGLI ◽  
Patrizia TORRIGIANI ◽  
Nello BAGNI ◽  
...  
2021 ◽  
Author(s):  
Yang Sun ◽  
Yan qiong Li ◽  
Wen han Dong ◽  
Ai li Sun ◽  
Ning wei Chen ◽  
...  

Abstract The complete genome of the dsRNA virus isolated from Rhizoctonia solani AG-1 IA 9–11 (designated as Rhizoctonia solani dsRNA virus 11, RsRV11 ) were determined. The RsRV11 genome was 9,555 bp in length, contained three conserved domains, SMC, PRK and RT-like super family, and encoded two non-overlapping open reading frames (ORFs). ORF1 potentially coded for a 204.12 kDa predicted protein, which shared low but significant amino acid sequence identities with the putative protein encoded by Rhizoctonia solani RNA virus HN008 (RsRV-HN008) ORF1. ORF2 potentially coded for a 132.41 kDa protein which contained the conserved motifs of the RNA-dependent RNA polymerase (RdRp). Phylogenetic analysis indicated that RsRV11 was clustered with RsRV-HN008 in a separate clade independent of other virus families. It implies that RsRV11, along with RsRV-HN008 possibly a new fungal virus taxa closed to the family Megabirnaviridae, and RsRV11 is a new member of mycoviruses.


Viruses ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 27
Author(s):  
Jun Kwon ◽  
Sang Guen Kim ◽  
Hyoun Joong Kim ◽  
Sib Sankar Giri ◽  
Sang Wha Kim ◽  
...  

The increasing emergence of antimicrobial resistance has become a global issue. Therefore, many researchers have attempted to develop alternative antibiotics. One promising alternative is bacteriophage. In this study, we focused on a jumbo-phage infecting Salmonella isolated from exotic pet markets. Using a Salmonella strain isolated from reptiles as a host, we isolated and characterized the novel jumbo-bacteriophage pSal-SNUABM-04. This phage was investigated in terms of its morphology, host infectivity, growth and lysis kinetics, and genome. The phage was classified as Myoviridae based on its morphological traits and showed a comparatively wide host range. The lysis efficacy test showed that the phage can inhibit bacterial growth in the planktonic state. Genetic analysis revealed that the phage possesses a 239,626-base pair genome with 280 putative open reading frames, 76 of which have a predicted function and 195 of which have none. By genome comparison with other jumbo phages, the phage was designated as a novel member of Machinavirus composed of Erwnina phages.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Chaitanya Erady ◽  
Adam Boxall ◽  
Shraddha Puntambekar ◽  
N. Suhas Jagannathan ◽  
Ruchi Chauhan ◽  
...  

AbstractUncharacterized and unannotated open-reading frames, which we refer to as novel open reading frames (nORFs), may sometimes encode peptides that remain unexplored for novel therapeutic opportunities. To our knowledge, no systematic identification and characterization of transcripts encoding nORFs or their translation products in cancer, or in any other physiological process has been performed. We use our curated nORFs database (nORFs.org), together with RNA-Seq data from The Cancer Genome Atlas (TCGA) and Genotype-Expression (GTEx) consortiums, to identify transcripts containing nORFs that are expressed frequently in cancer or matched normal tissue across 22 cancer types. We show nORFs are subject to extensive dysregulation at the transcript level in cancer tissue and that a small subset of nORFs are associated with overall patient survival, suggesting that nORFs may have prognostic value. We also show that nORF products can form protein-like structures with post-translational modifications. Finally, we perform in silico screening for inhibitors against nORF-encoded proteins that are disrupted in stomach and esophageal cancer, showing that they can potentially be targeted by inhibitors. We hope this work will guide and motivate future studies that perform in-depth characterization of nORF functions in cancer and other diseases.


2008 ◽  
Vol 190 (18) ◽  
pp. 6111-6118 ◽  
Author(s):  
P. Rousseau ◽  
C. Loot ◽  
C. Turlan ◽  
S. Nolivos ◽  
M. Chandler

ABSTRACT IS911 is a bacterial insertion sequence composed of two consecutive overlapping open reading frames (ORFs [orfA and orfB]) encoding the transposase (OrfAB) as well as a regulatory protein (OrfA). These ORFs are bordered by terminal left and right inverted repeats (IRL and IRR, respectively) with several differences in nucleotide sequence. IS911 transposition is asymmetric: each end is cleaved on one strand to generate a free 3′-OH, which is then used as the nucleophile in attacking the opposite insertion sequence (IS) end to generate a free IS circle. This will be inserted into a new target site. We show here that the ends exhibit functional differences which, in vivo, may favor the use of one compared to the other during transposition. Electromobility shift assays showed that a truncated form of the transposase [OrfAB(1-149)] exhibits higher affinity for IRR than for IRL. While there was no detectable difference in IR activities during the early steps of transposition, IRR was more efficient during the final insertion steps. We show here that the differential activities between the two IRs correlate with the different affinities of OrfAB(1-149) for the IRs during assembly of the nucleoprotein complexes leading to transposition. We conclude that the two inverted repeats are not equivalent during IS911 transposition and that this asymmetry may intervene to determine the ordered assembly of the different protein-DNA complexes involved in the reaction.


2013 ◽  
Vol 195 (17) ◽  
pp. 3819-3826 ◽  
Author(s):  
S. Gong ◽  
Z. Yang ◽  
L. Lei ◽  
L. Shen ◽  
G. Zhong

2012 ◽  
Vol 78 (24) ◽  
pp. 8719-8734 ◽  
Author(s):  
Mariángeles Briggiler Marcó ◽  
Josiane E. Garneau ◽  
Denise Tremblay ◽  
Andrea Quiberoni ◽  
Sylvain Moineau

ABSTRACTWe characterized twoLactobacillus plantarumvirulent siphophages, ATCC 8014-B1 (B1) and ATCC 8014-B2 (B2), previously isolated from corn silage and anaerobic sewage sludge, respectively. Phage B2 infected two of the eightL. plantarumstrains tested, while phage B1 infected three. Phage adsorption was highly variable depending on the strain used. Phage defense systems were found in at least twoL. plantarumstrains, LMG9211 and WCSF1. The linear double-stranded DNA genome of thepac-type phage B1 had 38,002 bp, a G+C content of 47.6%, and 60 open reading frames (ORFs). Surprisingly, the phage B1 genome has 97% identity with that ofPediococcus damnosusphage clP1 and 77% identity with that ofL. plantarumphage JL-1; these phages were isolated from sewage and cucumber fermentation, respectively. The double-stranded DNA (dsDNA) genome of thecos-type phage B2 had 80,618 bp, a G+C content of 36.9%, and 127 ORFs with similarities to those ofBacillusandLactobacillusstrains as well as phages. Some phage B2 genes were similar to ORFs fromL. plantarumphage LP65 of theMyoviridaefamily. Additionally, 6 tRNAs were found in the phage B2 genome. Protein analysis revealed 13 (phage B1) and 9 (phage B2) structural proteins. To our knowledge, this is the first report describing such high identity between phage genomes infecting different genera of lactic acid bacteria.


2019 ◽  
Vol 8 (43) ◽  
Author(s):  
T. O. C. Faleye ◽  
O. M. Adewumi ◽  
D. Klapsa ◽  
M. Majumdar ◽  
J. Martin ◽  
...  

Here, we describe nearly complete genome sequences (7,361 nucleotides [nt] and 6,893 nt) of two echovirus 20 (E20) isolates from Nigeria that were simultaneously typed as CVB and E20 (dual serotype) by neutralization assay. Both include two overlapping open reading frames (ORFs) of 67 and 2,183 amino acids that encoded a recently described gut infection-facilitating protein and the classic enterovirus proteins, respectively.


2021 ◽  
Author(s):  
Juan F Cornejo-Franco ◽  
Francisco Flores ◽  
Dimitre Mollov ◽  
diego fernando quito-avila

Abstract The complete sequence of a new viral RNA from babaco (Vasconcellea x heilbornii) was determined. The genome consisted of 4,584 nucleotides organized in two non-overlapping open reading frames (ORFs 1 and 2), a 9-nt-long noncoding region (NCR) at the 5’ terminus and a 1,843 -nt-long NCR at the 3’ terminus. Sequence comparisons of ORF 2 revealed homology to the RNA-dependent-RNA-polymerase (RdRp) of several umbra- and umbra-related viruses. Phylogenetic analysis of the RdRp placed the new virus in a well-supported and cohesive clade that includes umbra-like viruses reported from papaya, citrus, opuntia, maize and sugarcane hosts. This clade shares a most recent ancestor with the umbraviruses but has different genomic features. The creation of a new genus, within the Tombusviridae, is proposed for the classification of these novel viruses.


Sign in / Sign up

Export Citation Format

Share Document