scholarly journals Herpes simplex virus 1 infection induces ubiquitination of UBE1a

2020 ◽  
Author(s):  
Marina Ikeda ◽  
Tadashi Watanabe ◽  
Akihiro Ito ◽  
Masahiro Fujimuro

Herpes simplex virus 1 (HSV-1) is a human DNA virus that causes cold sores, keratitis, meningitis, and encephalitis. Ubiquitination is a post-translational protein modification essential for regulation of cellular events, such as proteasomal degradation, signal transduction, and protein trafficking. The process is also involved in events for establishing viral infection and replication. The first step in ubiquitination involves ubiquitin (Ub) binding with Ub-activating enzyme (E1, also termed UBE1) via a thioester linkage. Our results show that HSV-1 infection alters protein ubiquitination pattern in host cells, as evidenced by MS spectra and co-immunoprecipitation assays. HSV-1 induced ubiquitination of UBE1a isoform via an isopeptide bond with Lys604. Moreover, we show that ubiquitination of K604 in UBE1a enhances UBE1a activity; that is, the activity of ubiquitin-transfer to E2 enzyme. Subsequently, we investigated the functional role of UBE1a and ubiquitination of K604 in UBE1a. We found that UBE1-knockdown increased HSV-1 DNA replication and viral production. Further, overexpression of UBE1a, but not a UBE1a K604A mutant, suppressed viral replication. Furthermore, we found that UBE1a and ubiquitination at K604 in UBE1a retarded expression of HSV-1 major capsid protein, ICP5. Our findings show that UBE1a functions as an antiviral factor that becomes activated upon ubiquitination at Lys604.

2020 ◽  
Vol 94 (24) ◽  
Author(s):  
Giulia Tebaldi ◽  
Suzanne M. Pritchard ◽  
Anthony V. Nicola

ABSTRACT Herpes simplex virus 1 (HSV-1) causes significant morbidity and mortality in humans worldwide. HSV-1 enters epithelial cells via an endocytosis mechanism that is low-pH dependent. However, the precise intracellular pathway has not been identified, including the compartment where fusion occurs. In this study, we utilized a combination of molecular and pharmacological approaches to better characterize HSV entry by endocytosis. HSV-1 entry was unaltered in both cells treated with small interfering RNA (siRNA) to Rab5 or Rab7 and cells expressing dominant negative forms of these GTPases, suggesting entry is independent of the conventional endo-lysosomal network. The fungal metabolite brefeldin A (BFA) and the quinoline compound Golgicide A (GCA) inhibited HSV-1 entry via beta-galactosidase reporter assay and impaired incoming virus transport to the nuclear periphery, suggesting a role for trans-Golgi network (TGN) functions and retrograde transport in HSV entry. Silencing of Rab9 or Rab11 GTPases, which are involved in the retrograde transport pathway, resulted in only a slight reduction in HSV infection. Together, these results suggest that HSV enters host cells by an intracellular route independent of the lysosome-terminal endocytic pathway. IMPORTANCE Herpes simplex virus 1 (HSV-1), the prototype alphaherpesvirus, is ubiquitous in the human population and causes lifelong infection that can be fatal in neonatal and immunocompromised individuals. HSV enters many cell types by endocytosis, including epithelial cells, the site of primary infection in the host. The intracellular itinerary for HSV entry remains unclear. We probed the potential involvement of several Rab GTPases in HSV-1 entry and suggest that endocytic entry of HSV-1 is independent of the canonical lysosome-terminal pathway. A nontraditional endocytic route may be employed, such as one that intersects with the trans-Golgi network (TGN). These results may lead to novel targets for intervention.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Longzhen He ◽  
Baocheng Wang ◽  
Yuanyuan Li ◽  
Leqing Zhu ◽  
Peiling Li ◽  
...  

The innate immune response is the first line defense against viral infections. Novel genes involved in this system are continuing to emerge. SLC15A3, a proton-coupled histidine and di-tripeptide transporter that was previously found in lysosomes, has been reported to inhibit chikungunya viral replication in host cells. In this study, we found that SLC15A3 was significantly induced by DNA virus herpes simplex virus-1(HSV-1) in monocytes from human peripheral blood mononuclear cells. Aside from monocytes, it can also be induced by HSV-1 in 293T, HeLa cells, and HaCaT cells. Overexpression of SLC15A3 in 293T cells inhibits HSV-1 replication and enhances type I and type III interferon (IFN) responses, while silencing SLC15A3 leads to enhanced HSV-1 replication with reduced IFN production. Moreover, we found that SLC15A3 interacted with MAVS and STING and potentiated MAVS- and STING-mediated IFN production. These results demonstrate that SLC15A3 participates in anti-HSV-1 innate immune responses by regulating MAVS- and STING-mediated signaling pathways.


2014 ◽  
Vol 89 (3) ◽  
pp. 1932-1938 ◽  
Author(s):  
Dinesh Jaishankar ◽  
Abraam M. Yakoub ◽  
Anita Bogdanov ◽  
Tibor Valyi-Nagy ◽  
Deepak Shukla

Uncontrolled herpes simplex virus 1 (HSV-1) infection can advance to serious conditions, including corneal blindness or fatal encephalitis. Here, we describe a highly potent anti-HSV-1 peptide (DG2) that inhibits HSV-1 entry into host cells and blocks all aspects of infection. Importantly, DG2 is highly resistant to proteases and shows minimal toxicity, paving the way for prophylactic or therapeutic application of the peptidein vivo.


2020 ◽  
Author(s):  
Yangkun Shen ◽  
Zhoujie Ye ◽  
Xiangqian Zhao ◽  
Zhihua Feng ◽  
Jinfeng Chen ◽  
...  

ABSTRACTUpon HSV-1 infection, viral protein 16 (VP16), supported by Host Cell Factor C1 (HCFC1), is rapidly transported into the nucleus, and help to express a series of HSV-1 immediate-early proteins to begin its lytic replication. However, no direct evidence has shown if the HCFC1 deficiency can affect the proliferation of HSV-1 so far. Here, we showed that the HCFC1 deficiency led to a strong resistance to HSV-1 infection. Moreover, we identified Host Cell Factor C1 Regulator 1 (HCFC1R1) as a new host factor acting early in HSV infection for the transport of the HSV-1 capsid to the nucleus. The HCFC1R1 deficiency also led to a strong resistance to HSV-1 infection. The HCFC1R1 deficiency did not affect the attachment of HSV-1 to host cells but act early in HSV-1 infection by perturbing the formation of HCFC1/VP16 complex. Remarkably, in addition to wild-type HSV-1 infection, the host cells in the absence of either HCFC1 or HCFC1R1 showed strong resistant to the infection of TK-deficient HSV-1, which strain can course severe symptoms and tolerate to the current anti-HSV drug Acyclovir. Our data suggest that HCFC1 or HCFC1R1 may be used as the novel target for developing anti-HSV-1 therapies.IMPORTANCEHerpes simplex virus-1 (HSV-1) is widely spread in the human population and can cause a variety of herpetic diseases. Acyclovir, a guanosine analogue that targets the TK protein of HSV-1, is the first specific and selective anti-HSV-1 drug. However, the rapid emergence of resistant HSV-1 strains is occurring worldwide, endangering the efficacy of Acyclovir. Alternatively, targeting host factors is another strategy to stop HSV-1 infection. Unfortunately, although the HSV-1’s receptor, Nectin-1, was discovered in 1998, no effective antiviral drug to date has been developed by targeting Nectin-1. Targeting multiple pathways is the ultimate choice to prevent HSV-1 infection. Here we demonstrated that the deletion of HCFC1 or HCFC1R1 exhibits a strong inhibitory effect on both wild-type and TK-deficient HSV-1. Overall, we present evidence that HCFC1 or HCFC1R1 may be used as the novel target for developing anti-HSV-1 therapies with a defined mechanism of action.


2004 ◽  
Vol 78 (16) ◽  
pp. 8411-8420 ◽  
Author(s):  
Gregory T. Melroe ◽  
Neal A. DeLuca ◽  
David M. Knipe

ABSTRACT In response to viral infection, host cells elicit a number of responses, including the expression of alpha/beta interferon (IFN-α/β). In these cells, IFN regulatory factor-3 (IRF-3) undergoes a sequence of posttranslational modifications that allow it to act as a potent transcriptional coactivator of specific IFN genes, including IFN-β. We investigated the mechanisms by which herpes simplex virus 1 (HSV-1) inhibits the production of IFN-β mediated by the IRF-3 signaling pathway. Here, we show that HSV-1 infection can block the accumulation of IFN-β triggered by Sendai virus (SeV) infection. Our results indicate that HSV-1 infection blocks the nuclear accumulation of activated IRF-3 but does not block the initial virus-induced phosphorylation of IRF-3. The former effect was at least partly mediated by increased turnover of IRF-3 in HSV-1-infected cells. Using mutant viruses, we determined that the immediate-early protein ICP0 was necessary for the inhibition of IRF-3 nuclear accumulation. Expression of ICP0 also had the ability to reduce IFN-β production induced by SeV infection. ICP0 has been shown previously to play a role in HSV-1 sensitivity to IFN and in the inhibition of antiviral gene production. However, we observed that an ICP0 mutant virus still retained the ability to inhibit the production of IFN-β. These results argue that HSV-1 has multiple mechanisms to inhibit the production of IFN-β, providing additional ways in which HSV-1 can block the IFN-mediated host response.


2019 ◽  
Vol 93 (17) ◽  
Author(s):  
Xing Liu ◽  
Rachel Matrenec ◽  
Michaela U. Gack ◽  
Bin He

ABSTRACTThe Us11 protein encoded by herpes simplex virus 1 (HSV-1) functions to impair autophagy; however, the molecular mechanisms of this inhibition remain to be fully established. Here, we report that the Us11 protein targetstripartite motifprotein 23 (TRIM23), which is a key regulator of autophagy-mediated antiviral defense mediated by TANK-binding kinase 1 (TBK1). In virus-infected cells, the Us11 protein drastically reduces the formation of autophagosomes mediated by TRIM23 or TBK1. This autophagy-inhibitory effect is attributable to the binding of the Us11 protein to the ARF domain in TRIM23. Furthermore, such interaction spatially excludes TBK1 from the TRIM23 complex that also contains heat shock protein 90 (Hsp90). When stably expressed alone in host cells, the Us11 protein recapitulates the observed phenotypes seen in cells infected with the US11-expressing or wild-type virus. Consistent with this, expression of the Us11 protein promotes HSV-1 growth, while expression of TRIM23 restricts HSV-1 replication in the absence of US11. Together, these results suggest that disruption of the TRIM23-TBK1 complex by the Us11 protein inhibits autophagy-mediated restriction of HSV-1 infection.IMPORTANCEAutophagy is an evolutionarily conserved process that restricts certain intracellular pathogens, including HSV-1. Although HSV-1 is well known to inhibit autophagy, little is known about the precise molecular mechanisms of autophagy inhibition. We demonstrate that the Us11 protein of HSV-1 spatially disrupts the TRIM23-TBK1 complex, which subsequently suppresses autophagy and autophagy-mediated virus restriction. Thus, expression of the Us11 protein facilitates HSV-1 replication. These data unveil new insight into viral escape from autophagy-mediated host restriction mechanisms.


2021 ◽  
Vol 9 (2) ◽  
pp. 434
Author(s):  
Tony Elias ◽  
Lee H. Lee ◽  
Miriam Rossi ◽  
Francesco Caruso ◽  
Sandra D. Adams

Herpes simplex virus-1 (HSV-1) causes a wide range of infections from mild to life-threatening in the human population. There are effective treatments for HSV-1 infections that are limited due HSV-1 latency and development of resistance to current therapeutics. The goal of this study was to investigate the antioxidant and antiviral effects of embelin on HSV-1 in cultured Vero cells. Oxidative stress was verified by an extensive production of a reactive oxygen species (ROS) H2O2. Vero cells were infected with a recombinant strain of HSV-1 and antiviral assays, time course attachment, penetration, and post penetration assays, confocal microscopy, qPCR, and antioxidant assays were conducted. Our results lead to the conclusion that embelin is noncytotoxic at concentrations tested ranging from 20 to 70 µM. Treatment of HSV-1 virions with embelin resulted in 98.7–100% inhibition and affected the early stage of HSV-1 infection of Vero cells, by inhibiting the attachment and penetration of HSV-1 virions to host cells. Treatment of virions with concentrations of embelin ranging from 35 to 60 µM significantly reduced the production of H2O2. In conclusion, embelin reduces oxidative damage caused by HSV-1 infection and is an effective antiviral to reduce the infection of HSV-1 in cultured Vero cells. Further studies are needed to explore the possibility of embelin as a medicinal agent.


2005 ◽  
Vol 79 (20) ◽  
pp. 12840-12851 ◽  
Author(s):  
Martha Simpson-Holley ◽  
Robert C. Colgrove ◽  
Grzegorz Nalepa ◽  
J. Wade Harper ◽  
David M. Knipe

ABSTRACT Herpes simplex virus 1 (HSV-1) replicates in the nucleus of host cells and radically alters nuclear architecture as part of its replication process. Replication compartments (RCs) form, and host chromatin is marginalized. Chromatin is later dispersed, and RCs spread past it to reach the nuclear edge. Using a lamin A-green fluorescent protein fusion, we provide direct evidence that the nuclear lamina is disrupted during HSV-1 infection and that the UL31 and UL34 proteins are required for this. We show nuclear expansion from 8 h to 24 h postinfection and place chromatin rearrangement and disruption of the lamina in the context of this global change in nuclear architecture. We show HSV-1-induced disruption of the localization of Cdc14B, a cellular protein and component of a putative nucleoskeleton. We also show that UL31 and UL34 are required for nuclear expansion. Studies with inhibitors of globular actin (G-actin) indicate that G-actin plays an essential role in nuclear expansion and chromatin dispersal but not in lamina alterations induced by HSV-1 infection. From analyses of HSV infections under various conditions, we conclude that nuclear expansion and chromatin dispersal are dispensable for optimal replication, while lamina rearrangement is associated with efficient replication.


2018 ◽  
Vol 92 (15) ◽  
Author(s):  
Katharina Thier ◽  
Maureen Möckel ◽  
Katja Palitzsch ◽  
Katinka Döhner ◽  
Beate Sodeik ◽  
...  

ABSTRACT To enter host cells, herpes simplex virus 1 (HSV-1) initially attaches to cell surface glycosaminoglycans, followed by the requisite binding to one of several cellular receptors, leading to viral internalization. Although virus-receptor interactions have been studied in various cell lines, the contributions of individual receptors to uptake into target tissues such as mucosa, skin, and cornea are not well understood. We demonstrated that nectin-1 acts as a major receptor for HSV-1 entry into murine epidermis, while herpesvirus entry mediator (HVEM) can serve as an alternative receptor. Recently, the macrophage receptor with collagenous structure (MARCO) has been described to mediate adsorption of HSV-1 to epithelial cells. Here, we investigated the impact of MARCO on the entry process of HSV-1 into the two major cell types of skin, keratinocytes in the epidermis and fibroblasts in the underlying dermis. Using ex vivo infection of murine epidermis, we showed that HSV-1 entered basal keratinocytes of MARCO−/− epidermis as efficiently as those of control epidermis. In addition, entry into dermal fibroblasts was not impaired in the absence of MARCO. When we treated epidermis, primary keratinocytes, or fibroblasts with poly(I), a ligand for class A scavenger receptors, HSV-1 entry was strongly reduced. As we also observed reducing effects of poly(I) in the absence of both MARCO and scavenger receptor A1, we concluded that the inhibitory effects of poly(I) on HSV-1 infection are not directly linked to class A scavenger receptors. Overall, our results support that HSV-1 entry into skin cells is independent of MARCO. IMPORTANCE During entry into its host cells, the human pathogen herpes simplex virus (HSV) interacts with various cellular receptors. Initially, receptor interaction can mediate cellular adsorption, followed by receptor binding that triggers viral internalization. The intriguing question is which receptors are responsible for the various steps during entry into the natural target tissues of HSV? Previously, we demonstrated the role of nectin-1 as a major receptor and that of HVEM as an alternative receptor for HSV-1 to invade murine epidermis. As MARCO has been described to promote infection in skin, we explored the predicted role of MARCO as a receptor that mediates adsorption to epithelial cells. Our infection studies of murine skin cells indicate that the absence of MARCO does not interfere with the efficiency of HSV-1 entry and that the inhibitory effect on viral adsorption by poly(I), a ligand of MARCO, is independent of MARCO.


Author(s):  
Z. Hong Zhou ◽  
Jing He ◽  
Joanita Jakana ◽  
J. D. Tatman ◽  
Frazer J. Rixon ◽  
...  

Herpes simplex virus-1 (HSV-1) is a ubiquitous virus which is implicated in diseases ranging from self-curing cold sores to life-threatening infections. The 2500 Å diameter herpes virion is composed of a glycoprotein spike containing, lipid envelope, enclosing a protein layer (the tegument) in which is embedded the capsid (which contains the dsDNA genome). The B-, and A- and C-capsids, representing different morphogenetic stages in HSV-1 infected cells, are composed of 7, and 5 structural proteins respectively. The three capsid types are organized in similar T=16 icosahedral shells with 12 pentons, 150 hexons, and 320 connecting triplexes. Our previous 3D structure study at 26 Å revealed domain features of all these structural components and suggested probable locations for the outer shell proteins, VP5, VP26, VP19c and VP23. VP5 makes up most of both pentons and hexons. VP26 appeared to bind to the VP5 subunit in hexon but not to that in penton.


Sign in / Sign up

Export Citation Format

Share Document