scholarly journals Nucleotide sequences of similar size from the coliphage R17 genome

1973 ◽  
Vol 131 (3) ◽  
pp. 605-610 ◽  
Author(s):  
Ulrich F. E. Rensing ◽  
Alan Coulson ◽  
E. O. P. Thompson

A sequence of 33 nucleotides from the coliphage R17 RNA genome was determined. It constitutes the main component of a mixture of fragments that migrate together on electrophoresis in a separation according to molecular weight. Fragments of comparable chain length from 3′ end of RNA from coliphage R17, from a region preceding and overlapping the coat-protein cistron ribosome binding site and from the beginning of the A-protein cistron, were also found and characterized. ‘Hairpin’-like secondary structures are proposed for the longer fragments, one of which appears to have a tetranucleotide excised in the loop region.

2016 ◽  
Vol 27 (1) ◽  
pp. 1-10 ◽  
Author(s):  
José-Luis Rodríguez-Mejía ◽  
Abigail Roldán-Salgado ◽  
Joel Osuna ◽  
Enrique Merino ◽  
Paul Gaytán

Recombinant protein expression is one of the key issues in protein engineering and biotechnology. Among the different models for assessing protein production and structure-function studies, green fluorescent protein (GFP) is one of the preferred models because of its importance as a reporter in cellular and molecular studies. In this research we analyze the effect of codon deletions near the amino terminus of different GFP proteins on fluorescence. Our study includes Gly4 deletions in the enhanced GFP (EGFP), the red-shifted GFP and the red-shifted EGFP. The Gly4 deletion mutants and their corresponding wild-type counterparts were transcribed under the control of the T7 or Trc promoters and their expression patterns were analyzed. Different fluorescent outcomes were observed depending on the type of fluorescent gene versions. In silico analysis of the RNA secondary structures near the ribosome binding site revealed a direct relationship between their minimum free energy and GFP production. Integrative analysis of these results, including SDS-PAGE analysis, led us to conclude that the fluorescence improvement of cells expressing different versions of GFPs with Gly4 deleted is due to an enhancement of the accessibility of the ribosome binding site by reducing the stability of the RNA secondary structures at their mRNA leader regions.


1998 ◽  
Vol 44 (12) ◽  
pp. 1186-1192
Author(s):  
Guy Daxhelet ◽  
Philippe Gilot ◽  
Etienne Nyssen ◽  
Philippe Hoet

pGR71, a composite of plasmids pUB110 and pBR322, replicates in Escherichia coli and in Bacillus subtilis. It carries the chloramphenicol resistance gene (cat) from Tn9, which is not transcribed in either host by lack of a promoter. The cat gene is preceded by a Shine-Dalgarno sequence functional in E. coli but not in B. subtilis. Deleted pGR71 plasmids were obtained in B. subtilis when cloning foreign viral DNA upstream of this cat sequence, as well as by BAL31 exonuclease deletions extending upstream from the cat into the pUB110 moiety. These mutant plasmids expressed chloramphenicol acetyltransferase (CAT), conferring on B. subtilis resistance to high chloramphenicol concentrations. CAT expression peaked at the early postexponential phase of B. subtilis growth. The transcription initiation site of cat, determined by primer extension, was located downstream of a putative promoter sequence within the pUB110 moiety. N-terminal amino acid sequencing showed that native CAT was produced by these mutant plasmids. The cat ribosome-binding site, functional in E. coli, was repositioned within the pUB110 moiety and had consequently an extended homology with B. subtilis 16S rRNA, explaining the production of native enzyme.Key words: chloramphenicol acetyltransferase, Bacillus subtilis, postexponential gene expression, plasmid pUB110, ribosome-binding site, transcriptional promoter.


Toxicon ◽  
2020 ◽  
Vol 177 ◽  
pp. S45
Author(s):  
Xiao-Ping Li ◽  
Nilgun E. Tumer ◽  
Jennifer Nielsen Kahn

2013 ◽  
Vol 41 (9) ◽  
pp. e98-e98 ◽  
Author(s):  
Lior Zelcbuch ◽  
Niv Antonovsky ◽  
Arren Bar-Even ◽  
Ayelet Levin-Karp ◽  
Uri Barenholz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document