scholarly journals A study of the kinetics and mechanism of rabbit muscle l-glycerol 3-phosphate dehydrogenase

1974 ◽  
Vol 143 (1) ◽  
pp. 19-27 ◽  
Author(s):  
Philip Bentley ◽  
F. Mark Dickinson

1. The kinetics of oxidation of l-glycerol 3-phosphate by NAD+and of reduction of dihydroxyacetone phosphate by NADH catalysed by rabbit muscle glycerol 3-phosphate dehydrogenase were studied over the range pH6–9. 2. The enzyme was found to catalyse the oxidation of glyoxylate by NAD+at pH8.0 and the kinetics of this reaction were also studied. 3. The results are consistent with a compulsory mechanism of catalysis for glycerol 3-phosphate oxidation and dihydroxyacetone phosphate reduction in the intermediate regions of pH, but modifications to the basic mechanism are required to fully explain results at the extremes of the pH range, with these substrates and for glyoxylate oxidation at pH8.0.

1975 ◽  
Vol 147 (3) ◽  
pp. 541-547 ◽  
Author(s):  
C J Dickenson ◽  
F M Dickinson

1. The kinetics of oxidation of butan-1-ol and propan-2-ol by NAD+, catalysed by yeast alcohol dehydrogenase, were studied at 25 degrees C from pH 5.5 to 10, and at pH 7.05 from 14 degrees to 44 degrees C, 2. Under all conditions studied the results are consistent with a mechanism whereby some dissociation of coenzyme from the active enzyme-NAD+-alcohol ternary complexes occurs, and the mechanism is therefore not strictly compulsory order. 3. A primary 2H isotopic effect on the maximum rates of oxidation of [1-2H2]butan-1-ol and [2H7]propan-2-ol was found at 25 degrees C over the pH range 5.5-10. Further, in stopped-flow experiments at pH 7.05 and 25 degrees C, there was no transient formation of NADH in the oxidation of butan-1-ol and propan-2-ol. The principal rate-limiting step in the oxidation of dependence on pH of the maximum rates of oxidation of butan-1-ol and propan-2-ol is consisten with the possibility that histidine and cysteine residues may affect or control catalysis.


1984 ◽  
Vol 62 (4) ◽  
pp. 729-735 ◽  
Author(s):  
John W. Bunting ◽  
Glenn M. Kauffman

The kinetics of disproportionation and ferricyanide ion oxidation of the 10-methylacridinium cation have been measured spectrophotometrically over the pH range 9–14 in.20% CH3CN – 80% H2O (v/v) and ionic strength 1.0 at 25 °C. Disproportionation is kinetically second-order in total acridine species. The pH–rate profile is consistent with the rate-determining reaction of one acridinium cation with the pseudobase alkoxide anion derived from a second acridinium cation. Ferricyanide ion oxidation is kinetically first-order in each of ferricyanide ion and total acridine species. The pH–rate profile requires three distinct pathways for the ferricyanide ion oxidation of the 10-methylacridinium cation. For pH < 9.7, rate-determining attack of ferricyanide ion on the neutral pseudobase predominates, while for pH > 12.8 the predominant oxidation pathway involves reaction of ferricyanide ion with the pseudobase alkoxide ion. Between pH 9.7 and 12.8, the major oxidation pathway involves initial disproportionation of the acridinium cation followed by ferricyanide ion oxidation of the 9,10-dihydro-10-methylacridine product. This latter route accounts for a maximum of 69% of the total ferricyanide ion oxidation at pH 11.1.


1973 ◽  
Vol 26 (9) ◽  
pp. 1863 ◽  
Author(s):  
GT Briot ◽  
RH Smith

The kinetics of oxidation of thiocyanate to sulphate by aqueous iodine in the pH range 9.2-12.5 have been studied using a spectrophotometric stopped flow technique. The reaction is general base-catalysed, having the rate law ��������������������� -d[I2]a/dt = ([SCN-][I3-]/[I-]2)Σ kB[B] where [I2]a is the total analytical concentration of iodine, [B] is the concentration of base, and where the summation is taken over all bases present. Rate constants, kB, and activation energies have been measured for the bases, OH-, PO43- and CO32-. ��� A mechanism involving the initial steps ����������������� I2+SCN- ↔ ISCN+I- �����������������(rapid equilibrium) ������������� ISCN+H2O+B → HOSCN+I- + HB+ �����������(rate determining) followed by rapid reactions of HOSCN with itself or with iodine is proposed.


1989 ◽  
Vol 67 (4) ◽  
pp. 634-638 ◽  
Author(s):  
Rosa Pascual ◽  
Miguel A. Herraez ◽  
Emilio Calle.

The kinetics of oxidation of proline by periodate has been studied at pH 1.40–8.83 and 30.0 °C. The reaction rate is first order in both periodate and amino acid, and the overall reaction follows second-order kinetics. There was no evidence for the formation of an appreciable amount of intermediate. The reaction rate is highest at pH 4–7 and the oxidation is catalysed by [Formula: see text] ions. The pH dependence of the reaction rate can be explained in terms of reaction of periodate monoanion and the protonated and dipolar forms of the amino acid. The mechanism proposed and the derived rate law are consistent with the observed kinetics. The rate constants obtained from the derived rate law are in agreement with the observed rate constants, thus justifying the rate law and the proposed mechanistic scheme. Keywords: oxidation of proline, oxidation by periodate.


1974 ◽  
Vol 143 (1) ◽  
pp. 11-17 ◽  
Author(s):  
Philip Bentley ◽  
F. Mark Dickinson

1. The binding of NAD+and NADH to glycerol 3-phosphate dehydrogenase was studied in the pH range 6.0–9.0 at 25°C and in the temperature range 16–43°C at pH7.0. 2. The second-order velocity constants for the combination of NADH with the enzyme in the pH range 6.0–9.0 and for the combination of NAD+with the enzyme at pH6.0 were determined. 3. The velocity constant for the dissociation of the enzyme–NAD+complex at pH6.0 was measured.


1974 ◽  
Vol 52 (11) ◽  
pp. 2001-2004 ◽  
Author(s):  
Y. Sulfab ◽  
Hamid A. Elfaki

In the presence of vast excess of ferrocyanide, over the pH range 1.76–2.65, the reaction between iodate and ferrocyanide ions follows the rate law[Formula: see text]where ka and kb have values of 1.97 × 103 M−2 min−1 and 4.08 × 105 M−3 min−1, respectively, at an ionic strength of 1.18 M and a temperature of 25.0 ± 0.1 °C. K1 is the formation constant of monoprotonated ferrocyanide. The "overall activation energy" of the reaction was found to be 15.8 kcal/mol. Rate-determining steps consistent with the kinetics have been proposed.


1974 ◽  
Vol 141 (2) ◽  
pp. 545-554 ◽  
Author(s):  
D. V. Roberts ◽  
D. T. Elmore

Several esters of the α-N-toluene-p-sulphonyl and α-N-benzoyl derivatives of S-(3-aminopropyl)-l-cysteine and the methyl ester of S-(4-aminobutyl)-N-toluene-p-sulphonyl-l-cysteine were synthesized. The kinetics of hydrolysis of these and esters of the α-N-toluene-p-sulphonyl and α-N-benzoyl derivatives of l-arginine, l-lysine, S-(2-aminoethyl)-l-cysteine and esters of γ-guanidino-l-α-toluene-p-sulphonamidobutyric acid and α-N-toluene-p-sulphonyl-l-homoarginine by α- and β-trypsin were compared. On the basis of values of the specificity constants (kcat./Km), the two enzymes display similar catalytic efficiency towards some substrates. In other cases α-trypsin is less efficient than β-trypsin. It is possible that α-trypsin possesses greater molecular flexibility than β-trypsin.


2016 ◽  
Vol 230 (8) ◽  
Author(s):  
Muthusamy Rukmangathan ◽  
Vetrivel Santhoshkumar ◽  
Balasubramanian Ramkumar

AbstractThe kinetics of oxidation of a few aliphatic primary alcohols with 1-chlorobenzimidazole (CBI) was studied in aqueous acetic acid medium. The reactions were found to be first order each with respect to the concentrations of CBI and alcohol. The added HClO


1973 ◽  
Vol 26 (9) ◽  
pp. 1847 ◽  
Author(s):  
JN Pendlebury ◽  
RH Smith

The kinetics of oxidation of nitrite to nitrate by aqueous bromine have been investigated using a spectrophotometric stopped flow technique. In the pH range 4.2-5.8 (acetate buffer) the rate law is: - d[Br21,/dt = [Br21[N02 -I2 (a + b/[Br-1) (where [Br,], = [Br2]+[Br,-1) with a = (4.61-0-1) x lo4 l2 m01-~ s-l and b = (3.3 1-0.1) x lo4 1. mol-l s-l at 298.2 K and with the temperature dependences, - R d(lna)/d(l/T) = (46k 4) kJ mol-l and - R d(ln b)/d(l/T) = (45 k 2) kJ mol-'. In the pH range 0.8-2.5 (perchloric acid) the rate law is : - d[Br2],/dt = [HN0212[Br21 (w + v/[Br-l)/(l+ z[H+ItBr,l,) with w = (5.9+0.2)x lo4 l2 m01-~ s-l, v = (3.41-0.1)~ lo4 1, mol-l s-I, and z = (1.90i 0.06) x lo7 l2 mol-2 at 298.2 K. In addition: - R d ln(w/z)/d(l/T) = (31 1 4 ) kJ mol-I and - R d ln(v/z)/d(l/T) = (46 f 4) kJ mol-l In the pH range 2.8-3.3 (chloroacetate buffer) a combination of these two rate laws adequately describes the kinetic results. These rate laws have been interpreted in terms of two reversible initial reactions: 6) NO2- +Br2 + N02Br +Br- (followed by attack on N02Br by NO2-) (ii) NO2-+NO2- (or HNOJ + N204'- (or HN204-) (followed by attack by Br2 upon N204'- or HNZO4- or upon N203 formed from HN204-).


Sign in / Sign up

Export Citation Format

Share Document