scholarly journals The purification and properties of l-histidine-2-oxoglutarate aminotransferase from Pseudomonas testosteroni

1975 ◽  
Vol 147 (2) ◽  
pp. 327-334 ◽  
Author(s):  
A J Hacking ◽  
H Hassall

1. Inducible L-histidine--2-oxoglutarate aminotransferase was purified some 170-fold from extracts of Pseudomonas testosteroni. 2. The preparation showed only one major component after electrophoresis on polyacrylamide gels, though additional minor bands were observed when samples concentrated on a DEAE-cellulose column were used. 3. The molecular weight of the enzyme was found to be approx. 70000 by chromatography on Sephadex G-200. 4. The purification scheme produced enzyme that was inactive in the absence of pyridoxal 5′-phosphate. 5. The equilibrium constant for the reaction L-histidine+2-oxoglutarate equilibrium imidazolylpyruvate+L-glutamate was 0.49. 6. The reaction mechanism was Ping Pong. 7. The enzyme was shown to have only low activity towards aromatic amino acids and was highly specific for 2-oxoglutarate.

1984 ◽  
Vol 62 (5) ◽  
pp. 276-279 ◽  
Author(s):  
C. H. Lin ◽  
W. Chung ◽  
K. P. Strickland ◽  
A. J. Hudson

An isozyme of S-adenosylmethionine synthetase has been purified to homogeneity by ammonium sulfate fractionation, DEAE-cellulose column chromatography, and gel filtration on a Sephadex G-200 column. The purified enzyme is very unstable and has a molecular weight of 120 000 consisting of two identical subunits. Amino acid analysis on the purified enzyme showed glycine, glutamate, and aspartate to be the most abundant and the aromatic amino acids to be the least abundant. It possesses tripolyphosphatase activity which can be stimulated five to six times by S-adenosylmethionine (20–40 μM). The findings support the conclusion that an enzyme-bound tripolyphosphate is an obligatory intermediate in the enzymatic synthesis of S-adenosylmethionine from ATP and methionine.


1979 ◽  
Author(s):  
W. Nieuwenhuizen ◽  
J. J. Emeis ◽  
J. Hemmink

For our studies on the relation between blood fibrinolytic activity and repair of mechanically damaged arteries in our rat model we need a specific and sensitive assay for α2M. in the rat α2M is an acute-phase protein of which the level in blood is normally near zero but increases as a result of the damage. Moreover α2M is known to inhibit proteases involved in the fibrinolytic system. We developed a new purification procedure in which, conditions known to be harmful to the functionality of α2M were avoided. α2M was purified from plasma of turpentine-treated rats and proteolytic activities were suppressed throughout the purification procedure. The purification scheme successively involves: rivanol precipitation, Con A-Sepharose chromatography and DEAE-cellulose chromatography. Thus 48 mg of α2M was obtained from 100 ml rat plasma i.e. 20% recovery. The preparations were biochemically and immunologically pure. Amino acid and carbohydrate compositions were determined. The molecular weight is 760.000. The molecule consists of 4 subunits, M.W. = 190.000. A 1%1cm = 8.8 and p1 = 4.8. It binds 1 mole of trypsin or plasmin per mole. Bound proteases were only active on low molecular weight substrates such as BAEE and BOC-L-val-gly-L-arg βNA. Kinetic data of the bound enzymes (pH-optimas, Km and Vmax) indicate that factors other than steric hindrance are involved in the inhibitory action of α2M.


1970 ◽  
Vol 118 (3) ◽  
pp. 457-465 ◽  
Author(s):  
S. Kuwabara

1. When Bacillus cereus 569/H was grown in a casamino acid (casein-hydrolysate) medium containing zinc sulphate rapid production of extracellular β-lactamase II preceded that of β-lactamase I. 2. β-Lactamase I was separated from β-lactamase II by fractional precipitation with ammonium sulphate. 3. β-Lactamase I was purified by a process involving chromatography on Celite and DEAE-cellulose and β-lactamase II by chromatography on DEAE-cellulose after denaturation of β-lactamase I by heat. Both enzymes were obtained in crystalline form. 4. β-Lactamase II prepared in this way appeared to have a higher molecular weight than β-lactamase I and required Zn2+ as a cofactor for both cephalosporinase and penicillinase activities.


1975 ◽  
Vol 19 (1) ◽  
pp. 203-213
Author(s):  
W.B. Amos ◽  
L.M. Routledge ◽  
F.F. Yew

The proteins of the contractile spasmoneme of Zoothamnium have been examined for comparison with other motile systems. Though capable of calcium-induced contraction, glycerinated preparations of the spasmoneme contain neither actin nor tubulin at levels that can be detected in polyacrylamide gels. Sixty per cent of the protein in sodium dodecyl sulphate gels migrates in a band at a molecular weight of approximately 20,000, consisting largely of 2 similar protein species which are here given the name of spasmins. The amino acid composition of 2 spasmin fractions has been determined by a fluorimetric method. They are rich in Asx, Glx and serine, but have few aromatic amino acids and no cystine or methionine. In calcium-buffered polyacrylamide gels, it was observed that a reduction in the electrophoretic mobility of the spasmins was induced specifically by calcium (but not magnesium) at the same low concentrations as induce contraction. This indicates that the spasmins are calcium-binding proteins which may be involved directly in the calcium-induced contraction of the spasmoneme.


1979 ◽  
Vol 178 (2) ◽  
pp. 279-287 ◽  
Author(s):  
D K Podolsky ◽  
M M Weiser

A low-molecular-weight acceptor of galactosyltransferase activity was detected in sera and effusions of patients with extensive maligant disease. This substance was purified to homogeneity from both human serum and effusion by using sequential charcoal/Celite and DEAE-cellulose column chromatography. The purified acceptor was shown to act as substrate for both purified normal and cancer-associated human galactosyltransferase (EC 2.4.1.22) isoenzymes, but had a higher affinity for the cancer-associated isoenzyme (Km = 20 microM) than for the normal isoenzyme (Km = 500 microM). The substrate was found to be a glycopeptide with mol.wt. approx. 3600 determined by polyacrylamide-gel chromatography. Carbohyydate analysis demonstrated only the presence of glucosamine and mannose. Amino acid analysis revealed that the peptide moiety consisted of eight different amino acids, including two residues of asparagine and one residue of serine, but no threonine. These structural data suggest that the acceptor is a fraction of an asparagine-glucosamine type of glycoprotein.


1975 ◽  
Vol 151 (2) ◽  
pp. 227-238 ◽  
Author(s):  
A G McLennan ◽  
H M Keir

Two DNA polymerases of high molecular weight, pol A (mol.wt. 190 000) and pol B (mol.wt. 240 ooo), have been purified 6300-fold and 1600-fold respectively from an extramitochondrial supernatant of a bleached strain of Euglena gracilis. They have very similar requirements when assayed with an ‘activated’-DNA primer-template [the optimum conditions of pH and ionic (K+ and Mn2+) composition being 7.2, 25 mM and 0.2 mM respectively]. 0.2 mM-Mn2+ was about 1.5-2-fold as effective as 2 mM-Mg2+, owing to substrate activation by deoxyribonucleoside 5′-triphosphates in the presence of Mn2+. Km values for the triphosphates in the absence of activation were about 10(-6)M with Mn2+ and 8 × 10(-6) M with Mg2+ for both enzymes. They were inhibited to the same extent by N-ethylmaleimide, novobiocin and o-phenanthroline, but differed in their chromatographic behaviour on DEAE-cellulose and in their electrophoretic mobilities on polyacrylamide gel. No evidence was found for the existence in these cells of a DNA polymerase of low molecular weight, but there were indications that a third enzyme of high molecular weight might exist.


1996 ◽  
Vol 44 (4) ◽  
pp. 967-971 ◽  
Author(s):  
Juan Bautista ◽  
Inmaculada Hernandez-Pinzon ◽  
Manuel Alaiz ◽  
Juan Parrado ◽  
Francisco Millan

1971 ◽  
Vol 49 (1) ◽  
pp. 127-138 ◽  
Author(s):  
E. Pahlich ◽  
K. W. Joy

Glutamate dehydrogenase (L-glutamate: NAD+ oxidoreductase (deaminating), EC 1.4.1.2) has been purified 1250-fold from pea roots. The preparation contains only a single protein, and the molecular weight was estimated to be 208 000 ± 10 000. The enzyme shows NADH (aminating) and NAD+ (deaminating) activities, but the ratio of these activities is not constant and can be changed experimentally. NADPH activity is also present and shows a relatively constant ratio to NAD+ activity. EDTA inhibits NADH activity in intermediate concentrations, but reactivates at higher concentrations. NAD+ (and NADPH) activity is only slightly changed by EDTA. The effects of dioxane and the coenzymes on the enzyme are also reported. Mechanisms which could explain the different activity ratios, in terms of two interconvertible enzyme forms, are discussed.The pH optimum for NADH and NAD+ activities is about pH 8.0. Michaelis constants were found to be: α-ketoglutarate, 3.3 × 10−3 M; ammonium (sulfate), 3.8 × 10−2 M; glutamate, 7.3 × 10−3 M; NADH, 8.6 × 10−4 M; NAD+, 6.5 × 10−4 M. The enzyme is highly specific for the substrates glutamate and α-ketoglutarate, showing no alanine or aspartate dehydrogenase activity, and no deamination with a range of amino acids.


1978 ◽  
Vol 173 (1) ◽  
pp. 191-196 ◽  
Author(s):  
M Carroll

Those proteins of human liver that cross-reacted with antibodies raised to apparently homogenous hexosamindases A and B were detected by immunodiffusion. Cross-reacting proteins with high molecular weights (greater than 2000000) and intermediate molecular weights (70000–200000) were present both in the unadsorbed fraction and in the 0.05–0.2M-NaCl eluate obtained by DEAE-cellulose chromatography at pH7.0. The unadsorbed fraction also contained a cross-reacting protein of low molecular weight (10000–70000). The possible structural and functional relationships between hexosaminidase and the cross-reacting proteins are discussed. An apparently cross-reacting protein present in the 0.05M-NaCl eluate from the DEAE-cellulose column was serologically unrelated to hexosaminidase, but it gave a reaction of immunological identify with one of the apparently cross-reacting proteins having the charge and size characteristics of hexosaminidase A. It is suggested that immunochemical methods may provide criteria for the homogeneity of enzyme preparations superior to those of conventional methods.


1975 ◽  
Vol 151 (2) ◽  
pp. 327-336 ◽  
Author(s):  
P E Hickman ◽  
M J Weidemann

Pig spleen phosphofructokinase has been purified 800-fold with a yield of 17%. Two isoenzymes that appear to be kinetically identical can be separated by DEAE-cellulose column chromatography. In common with the enzyme from other mammalian sources, the spleen enzyme has a pH optimum of 8.2. At pH 7.0 it displays sigmoidal kinetics with respect to fructose 6-phosphate concentration but its co-operative behaviour is very dependent on pH, protein concentration and the concentration of MgATP. MgGTP and MgITP can replace MgATP as phosphate donors but, unlike MgATP, these nucleotides do not cause significant inhibition. Mn2+ and Co2+ (as the metal ion-ATP complexes) act as cofactors and in the free form are far more inhibitory than free Mg2+. The spleen enzyme responds to a wide variety of potential effector molecules: ADP, AMP, cyclic AMP, aspartate, NH4+, fructose 6-phosphate, fructose 1,6-diphosphate and Pi all act as either activators or protectors, whereas Mg-ATP, Mg2+, citrate, phosphoenol-pyruvate and the phosphoglucerates are inhibitors.


Sign in / Sign up

Export Citation Format

Share Document