scholarly journals Comparative biochemistry of β-oxidation. An investigation into the abilities of isolated heart mitochondria of various animal species to oxidize long-chain fatty acids, including the C22:1 monoenes

1978 ◽  
Vol 174 (2) ◽  
pp. 379-386 ◽  
Author(s):  
H Osmundsen ◽  
J Bremer

Rates of acylcarnitine oxidation by isolated heart mitochondria from various animal species were measured polarographically, and by using a spectrophotometric assay [see Osmundsen & Bremer (1977) Biochem. J. 164, 621-633]. Polarographic measurements do not give a correct guide to abilities to beta-oxidize very-long-chain acylcarnitines, in particular C22:1 fatty acylcarnitines. 2. No significant species differences were detected in the abilities to beta-oxidize various C22:1 fatty acylcarnitines. Significant species differences were, however, detected when rates of beta-oxidation were correlated with rates of respiration brought about by very-long-chain acylcarnitines. We concluded that some aspects of oxidative metabolism (possibly the oxidation of tricarboxylic acid-cycle intermediates) are inhibited by very-long-chain fatty acids in some species (e.g. the rat and the cat but not in others (e.g. the pig and the rabbit). 3. It is proposed that the pattern of variation of rates of oxidation of various acylcarnitines (as measured spectrophotometrically) of various chain lengths can be used as a guide to the chain-length specificities of the acyl-CoA dehydrogenases of beta-oxidation (EC 1.3.99.3).

1991 ◽  
Vol 261 (6) ◽  
pp. E719-E724
Author(s):  
S. J. Jin ◽  
K. Y. Tserng

The aim of this investigation is to assess whether long-chain fatty acids can be a substrate for omega-oxidation and the subsequent beta-oxidation to produce medium-chain dicarboxylic acids normally found in urine. Isolated rat liver 10,000 g supernatant and pellet fractions were used as the source of enzymes. The metabolism of palmitate was studied using [1,2,3,4-13C4]hexadecanoic acid as tracer. Selected ion monitoring mass spectrometry was utilized for the determination of isotope enrichments in precursor and products. Palmitate was found to be a good substrate for omega-oxidation; the rate was only slightly slower than decanoate. The beta-oxidation of [1,2,3,4-13C4]hexadecanedioic acid yielded labeled adipic, suberic, and sebacic acids. Isotope distribution in these dicarboxylic acids consisted mostly of unlabeled molecules (M + 0) and molecules labeled with four 13C (M + 4), in agreement with a beta-oxidation initiated equally from both carboxyl ends of the precursor. Significant enrichments (1-8%) with only two 13C labels (M + 2) indicate a partial bidirectional beta-oxidation. The direct metabolic conversion of hexadecanedioate to succinate was documented by the significant enrichment (1.40-1.90%) in M + 4 of succinate. These data indicate that long-chain fatty acids can be a substrate for the production of medium-chain dicarboxylates and the eventual direct conversion to succinate.


1987 ◽  
Vol 248 (1) ◽  
pp. 61-67 ◽  
Author(s):  
P Sharp ◽  
A Poulos ◽  
A Fellenberg ◽  
D Johnson

The polyenoic fatty acids with carbon chain lengths from 26 to 38 (very-long-chain fatty acids, VLCFA) previously detected in abnormal amounts in Zellweger syndrome brain have been shown to be n-6 derivatives and therefore probably derived by chain elongation of shorter-chain n-6 fatty acids such as linoleic acid and arachidonic acid. Polyenoic VLCFA are also present in Zellweger syndrome liver, but this tissue differs significantly from brain in that the saturated and mono-unsaturated derivatives are the major VLCFA. Zellweger syndrome brain polyenoic VLCFA are present in the neutral lipids predominantly in cholesterol esters, with smaller amounts in the non-esterified fatty acid and triacylglycerol fractions. These fatty acids are barely detectable in any of the major phospholipids, but are present in significant amounts in an unidentified minor phospholipid. The polyenoic VLCFA composition of this lipid differs markedly from that observed for all other lipids, as it contains high proportions of pentaenoic and hexaenoic fatty acids with 34, 36 and 38 carbon atoms. A polar lipid with the chromatographic properties in normal brain contains similar fatty acids. It is postulated that the polyenoic VLCFA may play an important role in normal brain and accumulate in Zellweger syndrome brain because of a deficiency in the peroxisomal beta-oxidation pathway, although a possible peroxisomal role in the control of carbon-chain elongation cannot be discounted.


1970 ◽  
Vol 44 (2) ◽  
pp. 354-360 ◽  
Author(s):  
Joseph B. Warshaw ◽  
Mary L. Terry

In view of the importance of fatty acids as substrates for the mature heart, fatty acid oxidation by fetal and calf heart mitochondria has been investigated. Free fatty acids of 10 carbon units or less which exhibit carnitine-independent transport into mitochondria were effective substrates for oxidative phosphorylation in both fetal and calf heart mitochondria. Efficient oxidative phosphorylation with these substrates was dependent upon the presence of bovine serum albumin in the assay medium to reverse the uncoupling effects of the fatty acids. In the presence of bovine serum albumin, ADP/0 ratios were in the range of 3 when short-chain fatty acids and carnitine esters of short- and long-chain fatty acids were substrates. Compared with calf heart mitochondria, fetal heart mitochondria showed decreased carnitine-dependent oxidation of palmityl-CoA. However, the oxidation of palmitylcarnitine was identical in both. These data suggest that the formation of palmitylcarnitine is rate limiting for palmityl-CoA oxidation by the fetal heart mitochondria and that long-chain fatty acids are not readily oxidized by the fetal heart.


Proceedings ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 33 ◽  
Author(s):  
Mustapha Cherkaoui-Malki ◽  
◽  
◽  
◽  
◽  
...  

Several of the peroxisomal neurodegenerative disorders are the consequence of a specific deficiency of an enzyme or a transporter involved in peroxisomal beta-oxidation of very long chain fatty acids [1,2]. [...]


1987 ◽  
Vol 247 (3) ◽  
pp. 531-535 ◽  
Author(s):  
R Hovik ◽  
H Osmundsen

Rates of peroxisomal beta-oxidation were measured as fatty acyl-CoA-dependent NAD+ reduction, by using solubilized peroxisomal fractions isolated from livers of rats treated with clofibrate. Medium- to long-chain saturated fatty acyl-CoA esters as well as long-chain polyunsaturated fatty acyl-CoA esters were used. Peroxisomal beta-oxidation shows optimal specificity towards long-chain polyunsaturated acyl-CoA esters. Eicosa-8,11,14-trienoyl-CoA, eicosa-11,14,17-trienoyl-CoA and docosa-7,10,13,16-tetraenoyl-CoA all gave Vmax. values of about 150% of that obtained with palmitoyl-CoA. The Km values obtained with these fatty acyl-CoA esters were 17 +/- 6, 13 +/- 4 and 22 +/- 3 microM respectively, which are in the same range as the value for palmitoyl-CoA (13.8 +/- 1 microM). Myristoyl-CoA gave the higher Vmax. (110% of the palmitoyl-CoA value) of the saturated fatty acyl-CoAs tested. Substrate inhibition was mostly observed with acyl-CoA esters giving Vmax. values higher than 50% of that given by palmitoyl-CoA.


Sign in / Sign up

Export Citation Format

Share Document