scholarly journals Effects of bile salts on the plasma membranes of isolated rat hepatocytes

1980 ◽  
Vol 188 (2) ◽  
pp. 321-327 ◽  
Author(s):  
D Billington ◽  
C E Evans ◽  
P P Godfrey ◽  
R Coleman

The conjugated trihydroxy bile salts glycocholate and taurocholate removed approx. 20–30% of the plasma-membrane enzymes 5′-nucleotidase, alkaline phosphatase and alkaline phosphodiesterase I from isolated hepatocytes before the onset of lysis, as judged by release of the cytosolic enzyme lactate dehydrogenase. The conjugated dihydroxy bile salt glycodeoxycholate similarly removed 10–20% of the 5′-nucleotidase and alkaline phosphatase activities, but not alkaline phosphodiesterase activity; this bile salt caused lysis of hepatocytes at approx. 10-fold lower concentrations (1.5–2.0mM) than either glycocholate or taurocholate (12–16mM). At low concentrations (7 mM), glycocholate released these enzymes in a predominantly particulate form, whereas at higher concentrations (15 mM) glycocholate further released these components in a predominantly ‘soluble’ form. Inclusion of 1% (w/v) bovine serum albumin in the incubations had a small protective effect on the release of enzymes from hepatocytes by glycodeoxycholate, but not by glycocholate. These observations are discussed in relation to the possible role of bile salts in the origin of some biliary proteins.

2003 ◽  
Vol 370 (2) ◽  
pp. 695-702 ◽  
Author(s):  
Roland B. GREGORY ◽  
Gregory J. BARRITT

Store-operated Ca2+ channels in liver cells have been shown previously to exhibit a high selectivity for Ca2+ and to have properties indistinguishable from those of Ca2+-release-activated Ca2+ (CRAC) channels in mast cells and lymphocytes [Rychkov, Brereton, Harland and Barritt (2001) Hepatology 33, 938—947]. The role of CRAC channels in the maintenance of hormone-induced oscillations in the cytoplasmic free Ca2+ concentration ([Ca2+]cyt) in isolated rat hepatocytes was investigated using several inhibitors of CRAC channels. 2-Aminoethyl diphenylborate (2-APB; 75μM), Gd3+ (1μM) and 1-{β-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenethyl}-1H-imidazole hydrochloride (SK&F 96365; 50μM) each inhibited vasopressin- and adrenaline (epinephrine)-induced Ca2+ oscillations (measured using fura-2). The characteristics of this inhibition were similar to those of inhibition caused by decreasing the extracellular Ca2+ concentration to zero by addition of EGTA. The effect of 2-APB was reversible. In contrast, LOE-908 {(R,S)-(3,4-dihydro-6,7-dimethoxy-isochinolin-1-yl)-2-phenyl-N,N-di[2-(2,3,4-trimethoxyphenyl)ethyl]acetamidemesylate}(30μM), used commonly to block Ca2+ inflow through intracellular-messenger-activated, non-selective cation channels, did not inhibit the Ca2+ oscillations. In the absence of added extracellular Ca2+, 2-APB, Gd3+ and SK&F 96365 did not alter the kinetics of the increase in [Ca2+]cyt induced by a concentration of adrenaline or vasopressin that induces continuous Ca2+ oscillations at the physiological extracellular Ca2+ concentration. Ca2+ inflow through non-selective cation channels activated by maitotoxin could not restore Ca2+ oscillations in cells treated with 2-APB to block Ca2+ inflow through CRAC channels. Evidence for the specificity of the pharmacological agents for inhibition of CRAC channels under the conditions of the present experiments with hepatocytes is discussed. It is concluded that Ca2+ inflow through CRAC channels is required for the maintenance of hormone-induced Ca2+ oscillations in isolated hepatocytes.


1993 ◽  
Vol 265 (1) ◽  
pp. G73-G80
Author(s):  
S. A. Weinman ◽  
R. P. Weeks

The importance of membrane voltage in uptake of bile salts into hepatocytes is not known. Electrogenicity of the primary bile salt transport process, Na-bile salt cotransport, has been difficult to determine because the large K and Cl conductances of the sinusoidal membrane (GK and GCl, respectively) obscure any transport associated currents. In the present study hepatocytes were treated to reduce these membrane conductances and electrogenic entry of taurocholate and glycocholate was demonstrated. Intracellular voltage and resistance changes resulting from bile salt transport were measured in hepatocytes in which GK and GCl were blocked by impalement with Na acetate microelectrodes and external exposure to quinine (400 microM). This increased the cell input resistance from 153 +/- 17 to 230 +/- 17 M omega (n = 14, P < 0.001). Under these conditions, exposure to 100 microM of taurocholate or glycocholate produced Na-dependent depolarizations of 3.0 +/- 0.5 and 4.2 +/- 0.8 mV, respectively. These correspond to transport currents of 13.9 and 7.6 pA/cell, which are comparable to those predicted from known [3H]taurocholate uptake rates if one positive charge enters the cell with each bile salt molecule. Although uptake of these two bile salts was electrogenic, this was not the case for all bile salts. Na-dependent transport of taurodehydrocholate, which occurs at similar rates to that for taurocholate, produced no voltage change. The unconjugated bile salts cholate and ursodeoxycholate also produced no measurable voltage or resistance changes. In conclusion, Na-dependent uptake of taurocholate and glycocholate is electrogenic, whereas uptake of taurodehydrocholate, ursodeoxycholate, and cholate is predominantly electroneutral.(ABSTRACT TRUNCATED AT 250 WORDS)


1986 ◽  
Vol 240 (2) ◽  
pp. 367-371 ◽  
Author(s):  
S Keppens ◽  
H De Wulf

Evidence has been presented for the existence in rat liver of P2-purinoceptors which are involved in the control of glycogenolysis. Isolated rat hepatocytes and purified liver plasma membranes have been used to study the binding of the ATP analogue adenosine 5′-[alpha- [35S]thio]triphosphate (ATP alpha [35S]) to these postulated P2-purinoceptors. The nucleotide analogue behaves as a full agonist for the activation of glycogen phosphorylase in isolated hepatocytes, 0.3 microM being required for half-maximal activation. Specific binding of ATP alpha [35S] to hepatocytes and plasma membranes occurs within 1 min and is essentially reversible. The analysis of the dose-dependency at equilibrium indicates the presence of binding sites with Kd of 0.23 microM with hepatocytes and Kd of 0.11 microM with plasma membranes. The relative affinities of 10 nucleotide analogues were deduced from competition experiments for ATP alpha [35S] binding to hepatocytes, and these correlated highly with their biological activity (activation of glycogen phosphorylase in hepatocytes). For all the agonists, binding occurs in the same concentration range as the biological effect. These data clearly suggest that the detected binding sites correspond to the physiological P2-purinoceptors involved in the regulation of liver glycogenolysis. The rank order of potency of some ATP analogues suggests that liver possesses the P2Y-subclass of P2-purinoceptors.


1985 ◽  
Vol 249 (6) ◽  
pp. G711-G718 ◽  
Author(s):  
M. S. Anwer ◽  
L. M. Clayton

The role of extracellular Ca2+ in hepatic bile formation, biliary membrane permeability, and taurocholate (TC) transport was studied in isolated perfused rat livers and in isolated rat hepatocytes to determine the functional importance of paracellular permeability in biliary bile acid excretion. Each liver was perfused for 1 h with perfusate containing 1.3 mM Ca2+ (control period) followed by another hour with 1.3, 0.5, 0.1, 0.05, 0.03, or 0.01 mM Ca2+ (experimental period). Basal bile flow and biliary excretion of added TC declined significantly only at and below 0.05 mM perfusate Ca2+ and was associated with an increase in bile-to-perfusate concentration ratio of [3H]inulin (B/P inulin ratio). A twofold increase in the diffusional permeability coefficient at 0.05 mM and a sixfold increase at 0.03 and 0.01 mM perfusate Ca2+ could explain the increased in B/P inulin ratios. Time-dependent increases in cell-to-medium concentration ratios of inulin were less in the absence than in the presence of Ca2+. Hepatic uptake rates of TC determined in isolated hepatocytes and from perfusate disappearance of added TC and efflux rates of TC from preloaded hepatocytes were not significantly affected by Ca2+ removal. It is possible that the observed decline in biliary TC excretion at low perfusate Ca2+ is due to regurgitation of secreted TC back into the perfusate followed by reuptake. This was supported by an accumulation of perfusate radioactivity when TC uptake inhibitors (furosemide and bumetanide) were added to the perfusate (0.03 mM Ca2+) 60 min after the addition of [14C]TC.(ABSTRACT TRUNCATED AT 250 WORDS)


1984 ◽  
Vol 217 (2) ◽  
pp. 477-483 ◽  
Author(s):  
J M Staddon ◽  
J D McGivan

The hormonal regulation of gluconeogenesis and ureogenesis in isolated rat hepatocytes with 5 mM-proline as precursor was studied, with the following results. (1) The formation of glucose and urea in a 30 min interval were stimulated more by vasopressin than by glucagon, and the effects of the two hormones in combination were additive. (2) The rates of gluconeogenesis during the 30 min were constant under control, glucagon-stimulated and glucagon-plus-vasopressin-stimulated conditions. The stimulated rate in the presence of vasopressin diminished with time; glucagon in combination with vasopressin prevented this diminution, resulting in an additive effect. (3) Coincident with these changes in gluconeogenesis, vasopressin caused a decrease in cell oxoglutarate concentration, which, in contrast with the decrease caused by glucagon, was greater, but not sustained unless glucagon was also present. Changes in cell glutamate concentration similar to those observed for oxoglutarate occurred. (4) The data suggest that activation of oxoglutarate dehydrogenase (EC 1.2.4.2) by glucagon and vasopressin by different mechanisms may explain the relative effects of the hormones alone and in combination on gluconeogenesis from proline.


1993 ◽  
Vol 265 (1) ◽  
pp. G35-G42 ◽  
Author(s):  
T. Mine ◽  
I. Kojima ◽  
E. Ogata

The aim of the present study was to assess the role of calcium fluxes in the action of glucagon on glycogenolysis and gluconeogenesis in isolated rat hepatocytes. Calcium influx was blocked by two ways: by use of the compound tetramethrin and by reduction of extracellular calcium to 1 microM. The minimal concentration of tetramethrin that inhibited glucagon-mediated calcium entry was 7.5 x 10(-7) M. In the presence of 7.5 x 10(-7) M tetramethrin, glucagon-induced glycogenolysis was markedly attenuated when glucagon concentration was 10(-9) M or higher. In contrast, tetramethrin had no effect on glucogenolysis evoked by lower concentrations of glucagon. Similarly, tetramethrin greatly reduced gluconeogenesis induced by high concentrations of glucagon without affecting the effect of low concentrations of glucagon. The same results were obtained in the presence of 1 microM extracellular calcium. To abolish glucagon-induced elevation of cytoplasmic free calcium concentration, we heavily loaded quin2 into hepatocytes. In these cells, glycogenolysis evoked by low concentrations of glucagon was completely abolished. Glycogenolysis caused by high concentrations of glucagon was markedly inhibited. These results indicate that glucagon action on hepatic glucose metabolism is mediated by two different mechanisms, which depend on concentrations of glucagon.


1996 ◽  
Vol 271 (4) ◽  
pp. G655-G663 ◽  
Author(s):  
J. T. Deng ◽  
M. F. Hoylaerts ◽  
M. E. De Broe ◽  
V. O. van Hoof

Circulating liver plasma membrane fragments (LPMF) were purified from human serum by means of a monoclonal antileucine aminopeptidase antibody, AD-1. This was done by immunoaffinity chromatography or by incubating the sera with AD-1-coated nitrocellulose disks. Alkaline phosphatase (ALP, EC 3.1.3.1) is bound to these LPMF through a glycosylphosphatidylinositol (GPI) anchor and is referred to as membrane-bound liver ALP (Mem-LiALP). Low concentrations of Triton X-100 or high bile salt concentrations released GPI anchor-bearing LiALP (Anch-LiALP) from purified LPMF; once released, Anch-LiALP was slowly and progressively converted to hydrophilic dimeric LiALP [soluble LiALP (Sol-LiALP)], free from its GPI anchor. Low levels of GPI-specific phospholipase D (GPI-PLD) activity were measured in the pure LPMF. Apparently, this membrane-associated GPI-PLD was released by the action of detergents and contributed to the spontaneous conversion of Anch-LiALP to Sol-LiALP. In the absence of detergents, GPI-PLD had little effect on Mem-LiALP, both in purified form as well as in serum. In vitro, isolated Anch-LiALP was converted to Sol-LiALP by both GPI-specific phospholipase C and GPI-PLD. Sol-LiALP in serum, however, appeared to be the product of GPI-PLD activity only. Five- to tenfold higher concentrations of Triton X-100 were needed to release Anch-LiALP from LPMF in serum, compared with those required in a solution of purified LPMF. In serum, as well as in purified conditions, only a small range of detergent of bile salt concentrations permitted the conversion of Mem-LiALP to Sol-LiALP. A model is proposed for the release in the circulation of Mem-LiALP, Anch-LiALP, and Sol-LiALP, involving both LPMF-associated GPI-PLD and liver sinusoid bile salts.


1977 ◽  
Vol 164 (2) ◽  
pp. 415-422 ◽  
Author(s):  
M H Wisher ◽  
W H Evans

1. Rat livers were dissociated into their constituent cells by perfusion through the portal vein with a medium containing collagenase, and hepatocytes separated from non-parenchymal cells. 2. It is shown that the procedure described by Wisher & Evans [(1975) Biochem. J. 146, 375-388] for preparation of plasma membranes from liver tissue when applied to isolated hepatocytes also yielded subfractions of similar morphology and marker-enzyme distribution. 3. Thus the distribution of alkaline phosphodiesterase, 5'-nucleotidase and the basal and glucagon-stimulated adenylate cyclase among two ‘light’ vesicular and one ‘heavy’ junction-containing plasma-membrane subfractions paralleled that reported for tissue-derived plasma-membrane subfractions. 4. Increased recoveries and specific activities of plasma-membrane marker enzymes were obtained when soya-bean trypsin inhibitor was included in the collagenase-containing perfusion media used to dissociate the liver. 5. Polyacrylamide-gel-electrophoretic analysis of the corresponding plasma-membrane subfractions prepared from liver tissue and isolated hepatocytes were generally similar. 6. The results indicate that the functional polarity of the hepatocyte's plasma membrane is retained after tissue dissociation. The damage occurring to plasma-membrane ectoenzymes by the collagenase-perfusion procedure is discussed.


Sign in / Sign up

Export Citation Format

Share Document