Role of extracellular Ca2+ in hepatic bile formation and taurocholate transport

1985 ◽  
Vol 249 (6) ◽  
pp. G711-G718 ◽  
Author(s):  
M. S. Anwer ◽  
L. M. Clayton

The role of extracellular Ca2+ in hepatic bile formation, biliary membrane permeability, and taurocholate (TC) transport was studied in isolated perfused rat livers and in isolated rat hepatocytes to determine the functional importance of paracellular permeability in biliary bile acid excretion. Each liver was perfused for 1 h with perfusate containing 1.3 mM Ca2+ (control period) followed by another hour with 1.3, 0.5, 0.1, 0.05, 0.03, or 0.01 mM Ca2+ (experimental period). Basal bile flow and biliary excretion of added TC declined significantly only at and below 0.05 mM perfusate Ca2+ and was associated with an increase in bile-to-perfusate concentration ratio of [3H]inulin (B/P inulin ratio). A twofold increase in the diffusional permeability coefficient at 0.05 mM and a sixfold increase at 0.03 and 0.01 mM perfusate Ca2+ could explain the increased in B/P inulin ratios. Time-dependent increases in cell-to-medium concentration ratios of inulin were less in the absence than in the presence of Ca2+. Hepatic uptake rates of TC determined in isolated hepatocytes and from perfusate disappearance of added TC and efflux rates of TC from preloaded hepatocytes were not significantly affected by Ca2+ removal. It is possible that the observed decline in biliary TC excretion at low perfusate Ca2+ is due to regurgitation of secreted TC back into the perfusate followed by reuptake. This was supported by an accumulation of perfusate radioactivity when TC uptake inhibitors (furosemide and bumetanide) were added to the perfusate (0.03 mM Ca2+) 60 min after the addition of [14C]TC.(ABSTRACT TRUNCATED AT 250 WORDS)

2003 ◽  
Vol 370 (2) ◽  
pp. 695-702 ◽  
Author(s):  
Roland B. GREGORY ◽  
Gregory J. BARRITT

Store-operated Ca2+ channels in liver cells have been shown previously to exhibit a high selectivity for Ca2+ and to have properties indistinguishable from those of Ca2+-release-activated Ca2+ (CRAC) channels in mast cells and lymphocytes [Rychkov, Brereton, Harland and Barritt (2001) Hepatology 33, 938—947]. The role of CRAC channels in the maintenance of hormone-induced oscillations in the cytoplasmic free Ca2+ concentration ([Ca2+]cyt) in isolated rat hepatocytes was investigated using several inhibitors of CRAC channels. 2-Aminoethyl diphenylborate (2-APB; 75μM), Gd3+ (1μM) and 1-{β-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenethyl}-1H-imidazole hydrochloride (SK&F 96365; 50μM) each inhibited vasopressin- and adrenaline (epinephrine)-induced Ca2+ oscillations (measured using fura-2). The characteristics of this inhibition were similar to those of inhibition caused by decreasing the extracellular Ca2+ concentration to zero by addition of EGTA. The effect of 2-APB was reversible. In contrast, LOE-908 {(R,S)-(3,4-dihydro-6,7-dimethoxy-isochinolin-1-yl)-2-phenyl-N,N-di[2-(2,3,4-trimethoxyphenyl)ethyl]acetamidemesylate}(30μM), used commonly to block Ca2+ inflow through intracellular-messenger-activated, non-selective cation channels, did not inhibit the Ca2+ oscillations. In the absence of added extracellular Ca2+, 2-APB, Gd3+ and SK&F 96365 did not alter the kinetics of the increase in [Ca2+]cyt induced by a concentration of adrenaline or vasopressin that induces continuous Ca2+ oscillations at the physiological extracellular Ca2+ concentration. Ca2+ inflow through non-selective cation channels activated by maitotoxin could not restore Ca2+ oscillations in cells treated with 2-APB to block Ca2+ inflow through CRAC channels. Evidence for the specificity of the pharmacological agents for inhibition of CRAC channels under the conditions of the present experiments with hepatocytes is discussed. It is concluded that Ca2+ inflow through CRAC channels is required for the maintenance of hormone-induced Ca2+ oscillations in isolated hepatocytes.


1990 ◽  
Vol 68 (6) ◽  
pp. 657-662 ◽  
Author(s):  
Louise Gariepy ◽  
Daphna Fenyves ◽  
Jean-Luc Petit ◽  
Ginette Raymond ◽  
Jean-Pierre Villeneuve

Several recent reports have shown that the hepatic uptake and subsequent elimination of some substrates is faster in the presence of albumin than in its absence, as if some of the substrate bound to albumin was also available for uptake. In the present study, we examined the effect of albumin on the clearance of propranolol by isolated rat hepatocyte suspensions. The clearance of total drug decreased progressively as albumin concentration increased. There was also a progressive decrease in the free fraction of propranolol and the net result was an increase in the clearance of unbound drug (+50% at 40 g/L albumin). This increase was not due to an oncotic pressure effect of albumin, nor to the presence of fatty acids bound to albumin. The clearance of propranolol by isolated hepatocytes from cirrhotic rats was decreased compared with controls (−50%), and albumin also increased propranolol free clearance, albeit to a lesser extent than in control animals. Our results indicate that albumin facilitates the elimination of propranolol by hepatocytes, possibly because of surface-mediated catalysis of the albumin–propranolol complexes.Key words: propranolol clearance, albumin, isolated rat hepatocytes, cirrhosis.


1979 ◽  
Vol 236 (1) ◽  
pp. C9-C14 ◽  
Author(s):  
T. Iga ◽  
D. L. Eaton ◽  
C. D. Klaassen

The mechanism responsible for the hepatic uptake of unconjugated bilirubin was examined in isolated rat hepatocytes from control and phenobartital-pretreated rats. The uptake was extremely rapid and the equilibrium between cell and medium was attained within 60 s with a 100-fold higher concentration in the cell than the medium. The initial velocity of uptake (Vo) exhibited a linear relationship to the bilirubin concentration in the medium. Pretreatment of cells with various metabolic inhibitors had no effect on the uptake of unconjugated bilirubin. Ouabain did significantly decrease Vo, but replacement of sodium ion with choline or lithium had no effect on bilirubin uptake. The organic acids sulfobromophthalein (112 muM) and taurocholic acid (50 (muM) and two steroidal compounds, diethylstilbestrol (50 muM) and spironolactone (50 muM), had no effect on the uptake of bilirubin. It is suggested that bilirubin gains access to the hepatocyte interior by passive diffusion into and through the lipid membrane and that intracellular binding may explain the high degree of bilirubin accumulation associated with the isolated hepatocytes.


1980 ◽  
Vol 188 (2) ◽  
pp. 321-327 ◽  
Author(s):  
D Billington ◽  
C E Evans ◽  
P P Godfrey ◽  
R Coleman

The conjugated trihydroxy bile salts glycocholate and taurocholate removed approx. 20–30% of the plasma-membrane enzymes 5′-nucleotidase, alkaline phosphatase and alkaline phosphodiesterase I from isolated hepatocytes before the onset of lysis, as judged by release of the cytosolic enzyme lactate dehydrogenase. The conjugated dihydroxy bile salt glycodeoxycholate similarly removed 10–20% of the 5′-nucleotidase and alkaline phosphatase activities, but not alkaline phosphodiesterase activity; this bile salt caused lysis of hepatocytes at approx. 10-fold lower concentrations (1.5–2.0mM) than either glycocholate or taurocholate (12–16mM). At low concentrations (7 mM), glycocholate released these enzymes in a predominantly particulate form, whereas at higher concentrations (15 mM) glycocholate further released these components in a predominantly ‘soluble’ form. Inclusion of 1% (w/v) bovine serum albumin in the incubations had a small protective effect on the release of enzymes from hepatocytes by glycodeoxycholate, but not by glycocholate. These observations are discussed in relation to the possible role of bile salts in the origin of some biliary proteins.


1984 ◽  
Vol 217 (2) ◽  
pp. 477-483 ◽  
Author(s):  
J M Staddon ◽  
J D McGivan

The hormonal regulation of gluconeogenesis and ureogenesis in isolated rat hepatocytes with 5 mM-proline as precursor was studied, with the following results. (1) The formation of glucose and urea in a 30 min interval were stimulated more by vasopressin than by glucagon, and the effects of the two hormones in combination were additive. (2) The rates of gluconeogenesis during the 30 min were constant under control, glucagon-stimulated and glucagon-plus-vasopressin-stimulated conditions. The stimulated rate in the presence of vasopressin diminished with time; glucagon in combination with vasopressin prevented this diminution, resulting in an additive effect. (3) Coincident with these changes in gluconeogenesis, vasopressin caused a decrease in cell oxoglutarate concentration, which, in contrast with the decrease caused by glucagon, was greater, but not sustained unless glucagon was also present. Changes in cell glutamate concentration similar to those observed for oxoglutarate occurred. (4) The data suggest that activation of oxoglutarate dehydrogenase (EC 1.2.4.2) by glucagon and vasopressin by different mechanisms may explain the relative effects of the hormones alone and in combination on gluconeogenesis from proline.


1991 ◽  
Vol 273 (2) ◽  
pp. 485-488 ◽  
Author(s):  
V A Zammit ◽  
A M Caldwell

The roles of protein kinase C, Ca2+/calmodulin-dependent protein kinase and AMP-activated protein kinase in the phosphorylation of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase induced by Ca2(+)-mobilizing conditions in isolated hepatocytes were investigated. Only partial evidence for the involvement of AMP-activated kinase was found. Antagonism of calmodulin action prolonged the decrease in expressed/total activity ratio induced by vasopressin plus glucagon. Protease inhibitors active against Ca2(+)-dependent cytosolic proteases or lysosomal proteolysis did not attenuate the loss of total HMG-CoA reductase induced by glucagon plus vasopressin, but calmodulin antagonists largely prevented this effect.


1990 ◽  
Vol 258 (4) ◽  
pp. E597-E605
Author(s):  
G. Massicotte ◽  
L. Coderre ◽  
J. L. Chiasson ◽  
G. Thibault ◽  
E. L. Schiffrin ◽  
...  

Recent evidence suggests that angiotensin II (ANG II) and vasopressin (AVP) act on the liver via specific receptors. We have examined the binding properties of these receptors in isolated rat hepatocytes and studied the regulation of the biological responses to ANG II and AVP during pregnancy in the rat. In contrast to [3H]ANG II, 125I-labeled-[Sar1-Ile8]ANG II was markedly resistant to degradation by isolated liver cells. Displacement and saturation experiments with this iodinated antagonist revealed the presence of a single class of binding sites [2 x 10(5) sites/cell, dissociation constant (KD) = 1.0 nM]. The potency of ANG II analogues to displace 125I-[Sar1-Ile8]-ANG II agrees closely with data reported for vascular smooth muscle cells. Isolated hepatocytes have approximately 8 x 10(4) [3H]AVP binding sites/cell (KD = 1.0 nM) based on saturation experiments. AVP analogues selectively displaced [3H]AVP, suggesting the presence of V1-AVP receptor subtype. The maximum response of [Sar1]ANG II-induced glycogenolysis in the cells was decreased during gestation, whereas the effective concentration producing 50% of maximum response (EC50) was significantly increased (0.15-0.28 nM) when compared with cells from nonpregnant animals. In pregnancy, receptors for 125I-[Sar1-Ile8]ANG II were not changed in affinity (KD) or in density (Bmax). The maximum response and EC50 of AVP on liver glycogenolysis were not significantly decreased during pregnancy, whereas an increased number of AVP binding sites (from 5.0 +/- 0.5 x 10(4) to 11.0 +/- 1.7 x 10(4)) with similar KD was observed.(ABSTRACT TRUNCATED AT 250 WORDS)


2014 ◽  
Vol 60 (1) ◽  
pp. S205-S206
Author(s):  
I.R. Barosso ◽  
A.E. Zucchetti ◽  
G.S. Miszczuk ◽  
M.G. Roma ◽  
F.A. Crocenzi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document