scholarly journals Analysis of progress curves. Rate law of pyruvate kinase type I from Escherichia coli

1980 ◽  
Vol 189 (3) ◽  
pp. 421-433 ◽  
Author(s):  
M Markus ◽  
T Plesser ◽  
A Boiteux ◽  
B Hess ◽  
M Malcovati

Progress curves of the reaction catalysed by pyruvate kinase from Escherichia coli K12, designed to cover the four-dimensional concentration space of phosphoenolpyruvate, ADP, Mg2+ and ATP in the regulatory region, were recorded with the pH-stat method (pH 7.0 and 25 degrees C). Additional initial-rate measurement were performed to assess specific points. Two methods for the evaluation of progress curves were used: fitting the rate law to the rates obtained from the tangents of the progress curves and fitting the integrated rate law directly to the curves. Two models, both extensions of the concerted model given by Monod, Wyman & Changeux [(1965) J. Mol. Biol. 12, 88–118] with four protomers, could be fitted to the data within the experimental error. Model discrimination in favour of one of these models was possible by proper experimental design. In the selected model one conformational state of the enzyme forms the active complex. The active site of a second conformational state forms abortive complexes with Mg2+, causing strong inhibition at high Mg2+ concentrations. In the absence of ligands, most of the enzyme is in a third state that binds ATP at an allosteric site.

1983 ◽  
Vol 211 (3) ◽  
pp. 631-640 ◽  
Author(s):  
A Boiteux ◽  
M Markus ◽  
T Plesser ◽  
B Hess ◽  
M Malcovati

The influence of fructose 1,6-bisphosphate and Ca2+ on the kinetics of pyruvate kinase from Escherichia coli K12 was studied (at pH 7.0 and 25 degrees C) by using the pH-stat method for the measurement of the reaction progress as well as initial-rate analysis. The data were analysed on the basis of a concerted model with three conformational states [Markus, Plesser, Boiteux, Hess & Malcovati (1980) Biochem. J. 189, 421-433] by using a novel procedure for a computer-directed treatment of progress curves [Markus & Plesser (1976) Biochem. Soc. Trans. 4, 361-364]. By addition of fructose 1,6-bisphosphate the sigmoid kinetics with respect to phosphoenolpyruvate and Mg2+ is abolished and the activity of the enzyme is described by classical saturation kinetics. This is explained by exclusive binding of fructose 1,6-bisphosphate at an allosteric site of the conformational state that forms the active complex. We observe that Ca2+ is an activator of the enzyme at low Mg2+ and Ca2+ concentrations; otherwise it is an inhibitor. These effects can be understood by assuming that Ca2+ has the same binding properties as Mg2+, although it does not allow a catalytic turnover.


2008 ◽  
Vol S2 (01) ◽  
pp. 237-238
Author(s):  
T. Zhu ◽  
N. Fei ◽  
M. A. Perugini ◽  
T. F. Cooper ◽  
R. C.J. Dobson

Structure ◽  
1995 ◽  
Vol 3 (7) ◽  
pp. 729-741 ◽  
Author(s):  
Andrea Mattevi ◽  
Giovanna Valentini ◽  
Menico Rizzi ◽  
M.Luisa Speranza ◽  
Martino Bolognesi ◽  
...  

Author(s):  
Huaiqun Liu ◽  
Yuanyuan Shen ◽  
Peng Zhao ◽  
Yuxin Liu

2017 ◽  
Vol 114 (46) ◽  
pp. 12178-12183 ◽  
Author(s):  
Binh Nguyen ◽  
Yerdos Ordabayev ◽  
Joshua E. Sokoloski ◽  
Elizabeth Weiland ◽  
Timothy M. Lohman

Escherichia coli UvrD DNA helicase functions in several DNA repair processes. As a monomer, UvrD can translocate rapidly and processively along ssDNA; however, the monomer is a poor helicase. To unwind duplex DNA in vitro, UvrD needs to be activated either by self-assembly to form a dimer or by interaction with an accessory protein. However, the mechanism of activation is not understood. UvrD can exist in multiple conformations associated with the rotational conformational state of its 2B subdomain, and its helicase activity has been correlated with a closed 2B conformation. Using single-molecule total internal reflection fluorescence microscopy, we examined the rotational conformational states of the 2B subdomain of fluorescently labeled UvrD and their rates of interconversion. We find that the 2B subdomain of the UvrD monomer can rotate between an open and closed conformation as well as two highly populated intermediate states. The binding of a DNA substrate shifts the 2B conformation of a labeled UvrD monomer to a more open state that shows no helicase activity. The binding of a second unlabeled UvrD shifts the 2B conformation of the labeled UvrD to a more closed state resulting in activation of helicase activity. Binding of a monomer of the structurally similar Escherichia coli Rep helicase does not elicit this effect. This indicates that the helicase activity of a UvrD dimer is promoted via direct interactions between UvrD subunits that affect the rotational conformational state of its 2B subdomain.


1991 ◽  
Vol 37 (5) ◽  
pp. 407-410
Author(s):  
Mônica A. M. Vieira ◽  
Beatriz E. C. Guth ◽  
Tânia A. T. Gomes

DNA probes that identify genes coding for heat-labile type I (LT-I) and heat-stable type 1 (ST-I) enterotoxins, enteropathogenic Escherichia coli adherence factor (EAF), and Shigella-like, invasiveness (INV) are used to evaluate the sensitivity and specificity of stool blots in comparison with the sensitivity and specificity of colony blots in detecting enteropathoghens. The sensitivities of the probes in stool blots are 91.7% for the LT-I probe, 76.9% for the ST-I probes, 78.9% for the EAF probe, and 45.5% for the INV probe. The specificity of all probes is higher than 95%. In general, the stool blot method identifies as many if not more LT-I-, ST-I-, and EAF-producing E. coli infections than the colony blots. Key words: DNA probes, stool blots, enteropathogens, diagnosis.


2016 ◽  
Vol 473 (21) ◽  
pp. 3923-3936 ◽  
Author(s):  
Dani Zalem ◽  
João P. Ribeiro ◽  
Annabelle Varrot ◽  
Michael Lebens ◽  
Anne Imberty ◽  
...  

The structurally related AB5-type heat-labile enterotoxins of Escherichia coli and Vibrio cholerae are classified into two major types. The type I group includes cholera toxin (CT) and E. coli LT-I, whereas the type II subfamily comprises LT-IIa, LT-IIb and LT-IIc. The carbohydrate-binding specificities of LT-IIa, LT-IIb and LT-IIc are distinctive from those of cholera toxin and E. coli LT-I. Whereas CT and LT-I bind primarily to the GM1 ganglioside, LT-IIa binds to gangliosides GD1a, GD1b and GM1, LT-IIb binds to the GD1a and GT1b gangliosides, and LT-IIc binds to GM1, GM2, GM3 and GD1a. These previous studies of the binding properties of type II B-subunits have been focused on ganglio core chain gangliosides. To further define the carbohydrate binding specificity of LT-IIb B-subunits, we have investigated its binding to a collection of gangliosides and non-acid glycosphingolipids with different core chains. A high-affinity binding of LT-IIb B-subunits to gangliosides with a neolacto core chain, such as Neu5Gcα3- and Neu5Acα3-neolactohexaosylceramide, and Neu5Gcα3- and Neu5Acα3-neolactooctaosylceramide was detected. An LT-IIb-binding ganglioside was isolated from human small intestine and characterized as Neu5Acα3-neolactohexaosylceramide. The crystal structure of the B-subunit of LT-IIb with the pentasaccharide moiety of Neu5Acα3-neolactotetraosylceramide (Neu5Ac-nLT: Neu5Acα3Galβ4GlcNAcβ3Galβ4Glc) was determined providing the first information for a sialic-binding site in this subfamily, with clear differences from that of CT and LT-I.


Sign in / Sign up

Export Citation Format

Share Document