scholarly journals Structural and functional characterization of recombinant mouse annexin A11: influence of calcium binding

2003 ◽  
Vol 373 (2) ◽  
pp. 437-449 ◽  
Author(s):  
Emilio LECONA ◽  
Javier TURNAY ◽  
Nieves OLMO ◽  
Ana GUZMÁN-ARÁNGUEZ ◽  
Reginald O. MORGAN ◽  
...  

Annexin A11 is one of the 12 vertebrate subfamilies in the annexin superfamily of calcium/phospholipid-binding proteins, distinguishable by long, non-homologous N-termini rich in proline, glycine and tyrosine residues. As there is negligible structural information concerning this annexin subfamily apart from primary sequence data, we have cloned, expressed and purified recombinant mouse annexin A11 to investigate its structural and functional properties. CD spectroscopy reveals two main secondary-structure contributions, α-helix and random coil (approx. 30% each), corresponding mainly to the annexin C-terminal tetrad and the N-terminus respectively. On calcium binding, an increase in α-helix and a decrease in random coil are detected. Fluorescence spectroscopy reveals that its only tryptophan residue, located at the N-terminus, is completely exposed to the solvent; calcium binding promotes a change in tertiary structure, which does not affect this tryptophan residue but involves the movement of approximately four tyrosine residues to a more hydrophobic environment. These calcium-induced structural changes produce a significant thermal stabilization, with an increase of approx. 14 °C in the melting temperature. Annexin A11 binds to acidic phospholipids and to phosphatidylethanolamine in the presence of calcium; weaker calcium-independent binding to phosphatidylserine, phosphatidic acid and phosphatidylethanolamine was also observed. The calcium-dependent binding to phosphatidylserine is accompanied by an increase in α-helix and a decrease in random-coil contents, with translocation of the tryptophan residue towards a more hydrophobic environment. This protein induces vesicle aggregation but requires non-physiological calcium concentrations in vitro. A three-dimensional model, consistent with these data, was generated to conceptualize annexin A11 structure–function relationships.

1983 ◽  
Vol 211 (3) ◽  
pp. 683-686 ◽  
Author(s):  
A S Tatham ◽  
R C Hider ◽  
A F Drake

Melittin, a surface-active polypeptide from bee venom, has an overall hydrophobic N-terminus, with basic residues clustered at the C-terminus. In aqueous solution melittin exists as a mixture of monomer and tetramer, the monomer adopting a predominantly random-coil configuration, whereas the tetramer is rich in α-helix. The tendency of melittin to aggregate is dependent on the counter-anions present in solution, the effect being most marked with phosphate, decreasing in the order HPO4(2-) greater than SO4(2-) greater than ClO4- greater than Cl-.


Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 208
Author(s):  
Fei Zhao ◽  
Xiaosong Zhai ◽  
Xuemei Liu ◽  
Meng Lian ◽  
Guoting Liang ◽  
...  

The purpose of this paper was to investigate the effect of high-intensity ultrasonication (HIU) pretreatment before enzymolysis on structural conformations of walnut protein isolate (WPI) and antioxidant activity of its hydrolysates. Aqueous WPI suspensions were subjected to ultrasonic processing at different power levels (600–2000 W) and times (5–30 min), and then changes in the particle size, zeta (ζ) potential, and structure of WPI were investigated, and antioxidant activity of its hydrolysates was determined. The particle size of the particles of aqueous WPI suspensions was decreased after ultrasound, indicating that sonication destroyed protein aggregates. The ζ-potential values of a protein solution significantly changed after sonication, demonstrating that the original dense structure of the protein was destroyed. Fourier transform infrared spectroscopy indicated a change in the secondary structure of WPI after sonication, with a decrease in β-turn and an increase in α-helix, β-sheet, and random coil content. Two absorption peaks of WPI were generated, and the fluorescence emission intensity of the proteins decreased after ultrasonic treatment, indicating that the changes in protein tertiary structure occurred. Moreover, the degree of hydrolysis and the antioxidant activity of the WPI hydrolysates increased after sonication. These results suggest that HIU pretreatment is a potential tool for improving the functional properties of walnut proteins.


Toxics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 51
Author(s):  
Jorge Humberto Limón-Pacheco ◽  
Natalie Jiménez-Barrios ◽  
Alejandro Déciga-Alcaraz ◽  
Adriana Martínez-Cuazitl ◽  
Mónica Maribel Mata-Miranda ◽  
...  

Some studies have shown that silicon dioxide nanoparticles (SiO2-NPs) can reach different regions of the brain and cause toxicity; however, the consequences of SiO2-NPs exposure on the diverse brain cell lineages is limited. We aimed to investigate the neurotoxic effects of SiO2-NP (0–100 µg/mL) on rat astrocyte-rich cultures or neuron-rich cultures using scanning electron microscopy, Attenuated Total Reflection-Fourier Transform Infrared spectroscopy (ATR-FTIR), FTIR microspectroscopy mapping (IQ mapping), and cell viability tests. SiO2-NPs were amorphous particles and aggregated in saline and culture media. Both astrocytes and neurons treated with SiO2-NPs showed alterations in cell morphology and changes in the IR spectral regions corresponding to nucleic acids, proteins, and lipids. The analysis by the second derivative revealed a significant decrease in the signal of the amide I (α-helix, parallel β-strand, and random coil) at the concentration of 10 µg/mL in astrocytes but not in neurons. IQ mapping confirmed changes in nucleic acids, proteins, and lipids in astrocytes; cell death was higher in astrocytes than in neurons (10–100 µg/mL). We conclude that astrocytes were more vulnerable than neurons to SiO2-NPs toxicity. Therefore, the evaluation of human exposure to SiO2-NPs and possible neurotoxic effects must be followed up.


2011 ◽  
Vol 236-238 ◽  
pp. 2221-2224
Author(s):  
Kui Hua Zhang ◽  
Xiu Mei Mo

In order to improve water-resistant ability silk fibroin (SF) and SF/P(LLA-CL) blended nanofibrous scaffolds for tissue engineering applications, methanol vapor were used to treat electrospun nanofibers. SEM indicated SF and SF/ P(LLA-CL) scaffolds maintained nanofibrous structure after treated with methanol vapor and possessed good water-resistant ability. Characterization of 13C NMR clarified methanol vapor induced SF conformation from random coil or α- helix to β-sheet. Moreover, treated SF/ P (LLA-CL) nanofibrous scaffolds still kept good mechanical properties. Methanol vapor could be ideal method to treat SF and SF/ P(LLA-CL) nanofibrous scaffolds for biomedical applications.


1977 ◽  
Vol 55 (4) ◽  
pp. 424-432
Author(s):  
Bernard R. Glick ◽  
Lewis J. Brubacher

Nonactivated papain was treated with N-bromosuccinimide at pH 4.75. The N-bromosuccinimide-modified enzyme was characterized by (1) the change in absorbance at 280 nm, (2) amino acid analysis, (3) separate chemical determinations of tryptophan and tyrosine, (4) difference spectroscopy, and (5) an N-terminal residue determination. It is concluded that N-bromosuccinimide in sevenfold molar excess oxidizes one tryptophan and two to three tyrosine residues per molecule of nonactivated papain, without causing peptide chain cleavage. Kinetic studies with several substrates and competitive peptide inhibitors were performed at pH 6 using the N-bromosuccinimide-modified papain. In addition, the kinetics of the modified enzyme with the substrate α-N-benzoyl-L-arginine ethyl ester were studied in the region of pH 3.5–9.0. All substrates (and inhibitors) tested, with the exception of α-N-benzoyl-L-arginine p-nitroanilide, displayed approximately a twofold decrease in both kcat and Km (or Ki), relative to the native enzyme. It is concluded that the key tryptophan residue which is modified is probably Trp-177.


2002 ◽  
Vol 93 (4) ◽  
pp. 1377-1383 ◽  
Author(s):  
Takaya Tsueshita ◽  
Salil Gandhi ◽  
Hayat Önyüksel ◽  
Israel Rubinstein

The purpose of this study was to elucidate the interactions between pituitary adenylate cyclase-activating peptide (PACAP)-(1—38) and phospholipids in vitro and to determine whether these phenomena modulate, in part, the vasorelaxant effects of the peptide in the intact peripheral microcirculation. We found that the critical micellar concentration of PACAP-(1—38) was 0.4–0.9 μM. PACAP-(1—38) significantly increased the surface tension of a dipalmitoylphosphatidylcholine monolayer and underwent conformational transition from predominantly random coil in saline to α-helix in the presence of distearoyl-phosphatidylethanolamine-polyethylene glycol (molecular mass of 2,000 Da) sterically stabilized phospholipid micelles (SSM) ( P < 0.05). Using intravital microscopy, we found that aqueous PACAP-(1—38) evoked significant concentration-dependent vasodilation in the intact hamster cheek pouch that was significantly potentiated when PACAP-(1—38) was associated with SSM ( P < 0.05). The vasorelaxant effects of aqueous PACAP-(1—38) were mediated predominantly by PACAP type 1 (PAC1) receptors, whereas those of PACAP-(1—38) in SSM predominantly by PACAP/vasoactive intestinal peptide type 1 and 2 (VPAC1/VPAC2) receptors. Collectively, these data indicate that PACAP-(1—38) self-associates and interacts avidly with phospholipids in vitro and that these phenomena amplify peptide vasoactivity in the intact peripheral microcirculation.


Sign in / Sign up

Export Citation Format

Share Document