scholarly journals Mutational analysis of ribosomal S6 kinase 2 shows differential regulation of its kinase activity from that of ribosomal S6 kinase 1

2003 ◽  
Vol 373 (2) ◽  
pp. 583-591 ◽  
Author(s):  
Sopheap PHIN ◽  
Deborah KUPFERWASSER ◽  
Joseph LAM ◽  
Kay K. LEE-FRUMAN

Ribosomal S6 kinase 2 (S6K2) is a serine/threonine kinase identified as a homologue of p70 ribosomal S6 kinase 1 (S6K1). S6K1 and S6K2 show different cellular localization as well as divergent amino acid sequences in non-catalytic domains, suggesting that their cellular functions and/or regulation may not be identical. Many of the serine/threonine residues that become phosphorylated and contribute to S6K1 activation are conserved in S6K2. In this study we carry out mutational analyses of these serine/threonine residues on S6K2 in order to elucidate the mechanism of S6K2 regulation. We find that Thr-228 and Ser-370 are crucial for S6K2 activity, and the three proline-directed serines in the autoinhibitory domain, Ser-410, Ser-417 and Ser-423, play a role in S6K2 activity regulation in a mitogen-activated protein kinase/extracellular-signal-regulated kinase kinase (MEK)-dependent manner. However, unlike S6K1, changing Thr-388 to glutamic acid in S6K2 renders the kinase fully active. This activity was resistant to the effects of rapamycin or wortmannin, indicating that mammalian target of rapamycin (mTOR) and phosphoinositide 3-kinase (PI3K) regulate S6K2 activity via Thr-388. MEK-dependent phosphorylation of the autoinhibitory serines in S6K2 occurs prior to Thr-388 activation. Combining T388E and T228A mutations inhibited S6K2 activation, and a kinase-inactive phosphoinositide-dependent protein kinase (PDK1) diminished T388E activity, suggesting that the role of Thr-388 is to allow further phosphorylation of Thr-228 by PDK1. Thr-388 fails to become phosphorylated in Ser-370 mutants, suggesting that the role of Ser-370 phosphorylation may be to allow Thr-388 phosphorylation. Finally, using the rapamycin-resistant T388E mutant, we provide evidence that S6K2 can phosphorylate S6 in vivo.

1994 ◽  
Vol 14 (1) ◽  
pp. 463-472 ◽  
Author(s):  
J Papkoff ◽  
R H Chen ◽  
J Blenis ◽  
J Forsman

Human platelets provide an excellent model system for the study of phosphorylation events during signal transduction and cell adhesion. Platelets are terminally differentiated cells that exhibit rapid phosphorylation of many proteins upon agonist-induced activation and aggregation. We have sought to identify the kinases as well as the phosphorylated substrates that participate in thrombin-induced signal transduction and platelet aggregation. In this study, we have identified two forms of mitogen-activated protein kinase (MAPK), p42mapk and p44mapk, in platelets. The data demonstrate that p42mapk but not p44mapk becomes phosphorylated on serine, threonine, and tyrosine during platelet activation. Immune complex kinase assays, gel renaturation assays, and a direct assay for MAPK activity in platelet extracts all support the conclusion that p42mapk but not p44mapk shows increased kinase activity during platelet activation. The activation of p42mapk, independently of p44mapk, in platelets is unique since in other systems, both kinases are coactivated by a variety of stimuli. We also show that platelets express p90rsk, a ribosomal S6 kinase that has previously been characterized as a substrate for MAPK. p90rsk is phosphorylated on serine in resting platelets, and this phosphorylation is enhanced upon thrombin-induced platelet activation. Immune complex kinase assays demonstrate that the activity of p90rsk is markedly increased during platelet activation. Another ribosomal S6 protein kinase, p70S6K, is expressed by platelets but shows no change in kinase activity upon platelet activation with thrombin. Finally, we show that the increased phosphorylation and activity of both p42mapk and p90rsk does not require integrin-mediated platelet aggregation. Since platelets are nonproliferative cells, the signal transduction pathways that include p42mapk and p90rsk cannot lead to a mitogenic signal and instead may regulate cytoskeletal or secretory changes during platelet activation.


1993 ◽  
Vol 90 (23) ◽  
pp. 10952-10956 ◽  
Author(s):  
R H Chen ◽  
C Abate ◽  
J Blenis

Phosphorylation of the C terminus of c-Fos has been implicated in serum response element-mediated repression of c-fos transcription after its induction by serum growth factors. The growth-regulated enzymes responsible for this phosphorylation in early G1 phase of the cell cycle and the sites of phosphorylation have not been identified. We now provide evidence that two growth-regulated, nucleus- and cytoplasm-localized protein kinases, 90-kDa ribosomal S6 kinase (RSK) and mitogen-activated protein kinase (MAP kinase), contribute to the serum-induced phosphorylation of c-Fos. The major phosphopeptides derived from biosynthetically labeled c-Fos correspond to phosphopeptides generated after phosphorylation of c-Fos in vitro with both RSK and MAP kinase. The phosphorylation sites identified for RSK (Ser-362) and MAP kinase (Ser-374) are in the transrepression domain. Cooperative phosphorylation at these sites by both enzymes was observed in vitro and reflected in vivo by the predominance of the peptide phosphorylated on both sites, as opposed to singly phosphorylated peptides. This study suggests a role for nuclear RSK and MAP kinase in modulating newly synthesized c-Fos phosphorylation and downstream signaling.


2004 ◽  
Vol 382 (2) ◽  
pp. 425-431 ◽  
Author(s):  
Ulrik DOEHN ◽  
Steen GAMMELTOFT ◽  
Shi-Hsiang SHEN ◽  
Claus J. JENSEN

RSK2 (p90 ribosomal S6 kinase 2) is activated via the ERK (extracellular-signal-regulated kinase) pathway by phosphorylation on four sites: Ser227 in the activation loop of the N-terminal kinase domain, Ser369 in the linker, Ser386 in the hydrophobic motif and Thr577 in the C-terminal kinase domain of RSK2. In the present study, we demonstrate that RSK2 is associated in vivo with PP2Cδ (protein phosphatase 2Cδ). In epidermal growth factorstimulated cells, RSK2 is partially dephosphorylated on all four sites in an Mn2+-dependent manner, leading to reduced protein kinase activity. Furthermore, PP2Cδ is phosphorylated by ERK on Thr315 and Thr333 in the catalytic domain. Mutation of Thr315 and Thr333 to alanine in a catalytically inactive mutant PP2Cδ(H154D) (His154→Asp) increases the association with RSK2 significantly, whereas mutation to glutamate, mimicking phosphorylation, reduces the binding of RSK2. The domains of interaction are mapped to the N-terminal extension comprising residues 1–71 of PP2Cδ and the N-terminal kinase domain of RSK2. The interaction is specific, since PP2Cδ associates with RSK1–RSK4, MSK1 (mitogen- and stress-activated kinase 1) and MSK2, but not with p70 S6 kinase or phosphoinositide-dependent kinase 1. We conclude that RSK2 is associated with PP2Cδ in vivo and is partially dephosphorylated by it, leading to reduced kinase activity.


1994 ◽  
Vol 14 (1) ◽  
pp. 463-472
Author(s):  
J Papkoff ◽  
R H Chen ◽  
J Blenis ◽  
J Forsman

Human platelets provide an excellent model system for the study of phosphorylation events during signal transduction and cell adhesion. Platelets are terminally differentiated cells that exhibit rapid phosphorylation of many proteins upon agonist-induced activation and aggregation. We have sought to identify the kinases as well as the phosphorylated substrates that participate in thrombin-induced signal transduction and platelet aggregation. In this study, we have identified two forms of mitogen-activated protein kinase (MAPK), p42mapk and p44mapk, in platelets. The data demonstrate that p42mapk but not p44mapk becomes phosphorylated on serine, threonine, and tyrosine during platelet activation. Immune complex kinase assays, gel renaturation assays, and a direct assay for MAPK activity in platelet extracts all support the conclusion that p42mapk but not p44mapk shows increased kinase activity during platelet activation. The activation of p42mapk, independently of p44mapk, in platelets is unique since in other systems, both kinases are coactivated by a variety of stimuli. We also show that platelets express p90rsk, a ribosomal S6 kinase that has previously been characterized as a substrate for MAPK. p90rsk is phosphorylated on serine in resting platelets, and this phosphorylation is enhanced upon thrombin-induced platelet activation. Immune complex kinase assays demonstrate that the activity of p90rsk is markedly increased during platelet activation. Another ribosomal S6 protein kinase, p70S6K, is expressed by platelets but shows no change in kinase activity upon platelet activation with thrombin. Finally, we show that the increased phosphorylation and activity of both p42mapk and p90rsk does not require integrin-mediated platelet aggregation. Since platelets are nonproliferative cells, the signal transduction pathways that include p42mapk and p90rsk cannot lead to a mitogenic signal and instead may regulate cytoskeletal or secretory changes during platelet activation.


Sign in / Sign up

Export Citation Format

Share Document