p42 mitogen-activated protein kinase and p90 ribosomal S6 kinase are selectively phosphorylated and activated during thrombin-induced platelet activation and aggregation

1994 ◽  
Vol 14 (1) ◽  
pp. 463-472
Author(s):  
J Papkoff ◽  
R H Chen ◽  
J Blenis ◽  
J Forsman

Human platelets provide an excellent model system for the study of phosphorylation events during signal transduction and cell adhesion. Platelets are terminally differentiated cells that exhibit rapid phosphorylation of many proteins upon agonist-induced activation and aggregation. We have sought to identify the kinases as well as the phosphorylated substrates that participate in thrombin-induced signal transduction and platelet aggregation. In this study, we have identified two forms of mitogen-activated protein kinase (MAPK), p42mapk and p44mapk, in platelets. The data demonstrate that p42mapk but not p44mapk becomes phosphorylated on serine, threonine, and tyrosine during platelet activation. Immune complex kinase assays, gel renaturation assays, and a direct assay for MAPK activity in platelet extracts all support the conclusion that p42mapk but not p44mapk shows increased kinase activity during platelet activation. The activation of p42mapk, independently of p44mapk, in platelets is unique since in other systems, both kinases are coactivated by a variety of stimuli. We also show that platelets express p90rsk, a ribosomal S6 kinase that has previously been characterized as a substrate for MAPK. p90rsk is phosphorylated on serine in resting platelets, and this phosphorylation is enhanced upon thrombin-induced platelet activation. Immune complex kinase assays demonstrate that the activity of p90rsk is markedly increased during platelet activation. Another ribosomal S6 protein kinase, p70S6K, is expressed by platelets but shows no change in kinase activity upon platelet activation with thrombin. Finally, we show that the increased phosphorylation and activity of both p42mapk and p90rsk does not require integrin-mediated platelet aggregation. Since platelets are nonproliferative cells, the signal transduction pathways that include p42mapk and p90rsk cannot lead to a mitogenic signal and instead may regulate cytoskeletal or secretory changes during platelet activation.

1994 ◽  
Vol 14 (1) ◽  
pp. 463-472 ◽  
Author(s):  
J Papkoff ◽  
R H Chen ◽  
J Blenis ◽  
J Forsman

Human platelets provide an excellent model system for the study of phosphorylation events during signal transduction and cell adhesion. Platelets are terminally differentiated cells that exhibit rapid phosphorylation of many proteins upon agonist-induced activation and aggregation. We have sought to identify the kinases as well as the phosphorylated substrates that participate in thrombin-induced signal transduction and platelet aggregation. In this study, we have identified two forms of mitogen-activated protein kinase (MAPK), p42mapk and p44mapk, in platelets. The data demonstrate that p42mapk but not p44mapk becomes phosphorylated on serine, threonine, and tyrosine during platelet activation. Immune complex kinase assays, gel renaturation assays, and a direct assay for MAPK activity in platelet extracts all support the conclusion that p42mapk but not p44mapk shows increased kinase activity during platelet activation. The activation of p42mapk, independently of p44mapk, in platelets is unique since in other systems, both kinases are coactivated by a variety of stimuli. We also show that platelets express p90rsk, a ribosomal S6 kinase that has previously been characterized as a substrate for MAPK. p90rsk is phosphorylated on serine in resting platelets, and this phosphorylation is enhanced upon thrombin-induced platelet activation. Immune complex kinase assays demonstrate that the activity of p90rsk is markedly increased during platelet activation. Another ribosomal S6 protein kinase, p70S6K, is expressed by platelets but shows no change in kinase activity upon platelet activation with thrombin. Finally, we show that the increased phosphorylation and activity of both p42mapk and p90rsk does not require integrin-mediated platelet aggregation. Since platelets are nonproliferative cells, the signal transduction pathways that include p42mapk and p90rsk cannot lead to a mitogenic signal and instead may regulate cytoskeletal or secretory changes during platelet activation.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Ye-Ming Lee ◽  
Kuo-Hsien Hsieh ◽  
Wan-Jung Lu ◽  
Hsiu-Chu Chou ◽  
Duen-Suey Chou ◽  
...  

Xanthohumol is the principal prenylated flavonoid in the hop plant (Humulus lupulusL.). Xanthohumol was found to be a very potent cancer chemopreventive agent through regulation of diverse mechanisms. However, no data are available concerning the effects of xanthohumol on platelet activation. The aim of this paper was to examine the antiplatelet effect of xanthohumol in washed human platelets. In the present paper, xanthohumol exhibited more-potent activity in inhibiting platelet aggregation stimulated by collagen. Xanthohumol inhibited platelet activation accompanied by relative [Ca2+]imobilization, thromboxane A2formation, hydroxyl radical (OH●) formation, and phospholipase C (PLC)γ2, protein kinase C (PKC), mitogen-activated protein kinase (MAPK), and Akt phosphorylation. Neither SQ22536, an inhibitor of adenylate cyclase, nor ODQ, an inhibitor of guanylate cyclase, reversed the xanthohumol-mediated inhibitory effect on platelet aggregation. Furthermore, xanthohumol did not significantly increase nitrate formation in platelets. This study demonstrates for the first time that xanthohumol possesses potent antiplatelet activity which may initially inhibit the PI3-kinase/Akt, p38 MAPK, and PLCγ2-PKC cascades, followed by inhibition of the thromboxane A2formation, thereby leading to inhibition of [Ca2+]iand finally inhibition of platelet aggregation. Therefore, this novel role of xanthohumol may represent a high therapeutic potential for treatment or prevention of cardiovascular diseases.


1993 ◽  
Vol 90 (23) ◽  
pp. 10952-10956 ◽  
Author(s):  
R H Chen ◽  
C Abate ◽  
J Blenis

Phosphorylation of the C terminus of c-Fos has been implicated in serum response element-mediated repression of c-fos transcription after its induction by serum growth factors. The growth-regulated enzymes responsible for this phosphorylation in early G1 phase of the cell cycle and the sites of phosphorylation have not been identified. We now provide evidence that two growth-regulated, nucleus- and cytoplasm-localized protein kinases, 90-kDa ribosomal S6 kinase (RSK) and mitogen-activated protein kinase (MAP kinase), contribute to the serum-induced phosphorylation of c-Fos. The major phosphopeptides derived from biosynthetically labeled c-Fos correspond to phosphopeptides generated after phosphorylation of c-Fos in vitro with both RSK and MAP kinase. The phosphorylation sites identified for RSK (Ser-362) and MAP kinase (Ser-374) are in the transrepression domain. Cooperative phosphorylation at these sites by both enzymes was observed in vitro and reflected in vivo by the predominance of the peptide phosphorylated on both sites, as opposed to singly phosphorylated peptides. This study suggests a role for nuclear RSK and MAP kinase in modulating newly synthesized c-Fos phosphorylation and downstream signaling.


Sign in / Sign up

Export Citation Format

Share Document