scholarly journals A sensitive core region in the structure of glutathione S-transferases

2003 ◽  
Vol 373 (3) ◽  
pp. 759-765 ◽  
Author(s):  
Jantana WONGSANTICHON ◽  
Thasaneeya HARNNOI ◽  
Albert J. KETTERMAN

A variant form of an Anopheles dirus glutathione S-transferase (GST), designated AdGSTD4-4, possesses a single amino acid change of leucine to arginine (Leu-103-Arg). Although residue 103 is outside of the active site, it has major effects on enzymic properties. To investigate these structural effects, site-directed mutagenesis was used to generate mutants by changing the non-polar leucine to alanine, glutamate, isoleucine, methionine, asparagine, or tyrosine. All of the recombinant GSTs showed approximately the same expression level at 25° C. Several of the mutants lacked glutathione (GSH)-binding affinity but were purified by S-hexyl-GSH-based affinity chromatography. However the protein yields (70-fold lower), as well as the GST activity (100-fold lower), of Leu-103-Tyr and Leu-103-Arg purifications were surprisingly low and precluded the performance of kinetic experiments. Size-exclusion chromatography showed that both GSTs Leu-103-Tyr and Leu-103-Arg formed dimers. Using 1-chloro-2,4-dinitrobenzene (CDNB) and GSH substrates to determine kinetic constants it was demonstrated that the other Leu-103 mutants possessed a greater Km towards GSH and a differing Km towards CDNB. The Vmax ranged from 44.7 to 87.0 μmol/min per mg (wild-type, 44.7 μmol/min per mg). Substrate-specificity studies showed different selectivity properties for each mutant. The structural residue Leu-103 affects the active site through H-bond and van-der-Waal contacts with six active-site residues in the GSH binding site. Changes in this interior core residue appear to disrupt internal packing, which affects active-site residues as well as residues at the subunit–subunit interface. Finally, the data suggest that Leu-103 is noteworthy as a sensitive residue in the GST structure that modulates enzyme activity as well as stability.

2004 ◽  
Vol 382 (2) ◽  
pp. 751-757 ◽  
Author(s):  
Pakorn WINAYANUWATTIKUN ◽  
Albert J. KETTERMAN

Glutathione S-transferases (GSTs) are dimeric proteins that play a major role in cellular detoxification. The GSTs in mosquito Anopheles dirus species B, an important malaria vector in South East Asia, are of interest because they can play an important role in insecticide resistance. In the present study, we characterized the Anopheles dirus (Ad)GST D3-3 which is an alternatively spliced product of the adgst1AS1 gene. The data from the crystal structure of GST D3-3 shows that Ile-52, Glu-64, Ser-65, Arg-66 and Met-101 interact directly with glutathione. To study the active-site function of these residues, alanine substitution site-directed mutagenesis was performed resulting in five mutants: I52A (Ile-52→Ala), E64A, S65A, R66A and M101A. Interestingly, the E64A mutant was expressed in Escherichia coli in inclusion bodies, suggesting that this residue is involved with the tertiary structure or folding property of this enzyme. However, the I52A, S65A, R66A and M101A mutants were purified by glutathione affinity chromatography and the enzyme activity characterized. On the basis of steady-state kinetics, difference spectroscopy, unfolding and refolding studies, it was concluded that these residues: (1) contribute to the affinity of the GSH-binding site (‘G-site’) for GSH, (2) influence GSH thiol ionization, (3) participate in kcat regulation by affecting the rate-limiting step of the reaction, and in the case of Ile-52 and Arg-66, influenced structural integrity and/or folding of the enzyme. The structural perturbations from these mutants are probably transmitted to the hydrophobic-substrate-binding site (‘H-site’) through changes in active site topology or through effects on GSH orientation. Therefore these active site residues appear to contribute to various steps in the catalytic mechanism, as well as having an influence on the packing of the protein.


2007 ◽  
Vol 189 (14) ◽  
pp. 5265-5275 ◽  
Author(s):  
Dylan Dodd ◽  
Joseph G. Reese ◽  
Craig R. Louer ◽  
Jimmy D. Ballard ◽  
M. Ashley Spies ◽  
...  

ABSTRACT Glutamate racemase activity in Bacillus anthracis is of significant interest with respect to chemotherapeutic drug design, because l-glutamate stereoisomerization to d-glutamate is predicted to be closely associated with peptidoglycan and capsule biosynthesis, which are important for growth and virulence, respectively. In contrast to most bacteria, which harbor a single glutamate racemase gene, the genomic sequence of B. anthracis predicts two genes encoding glutamate racemases, racE1 and racE2. To evaluate whether racE1 and racE2 encode functional glutamate racemases, we cloned and expressed racE1 and racE2 in Escherichia coli. Size exclusion chromatography of the two purified recombinant proteins suggested differences in their quaternary structures, as RacE1 eluted primarily as a monomer, while RacE2 demonstrated characteristics of a higher-order species. Analysis of purified recombinant RacE1 and RacE2 revealed that the two proteins catalyze the reversible stereoisomerization of l-glutamate and d-glutamate with similar, but not identical, steady-state kinetic properties. Analysis of the pH dependence of l-glutamate stereoisomerization suggested that RacE1 and RacE2 both possess two titratable active site residues important for catalysis. Moreover, directed mutagenesis of predicted active site residues resulted in complete attenuation of the enzymatic activities of both RacE1 and RacE2. Homology modeling of RacE1 and RacE2 revealed potential differences within the active site pocket that might affect the design of inhibitory pharmacophores. These results suggest that racE1 and racE2 encode functional glutamate racemases with similar, but not identical, active site features.


2007 ◽  
Vol 282 (38) ◽  
pp. 28157-28163 ◽  
Author(s):  
Karin Valmsen ◽  
William E. Boeglin ◽  
Reet Järving ◽  
Ivar Järving ◽  
Külliki Varvas ◽  
...  

The correct stereochemistry of prostaglandins is a prerequisite of their biological activity and thus is under a strict enzymatic control. Recently, we cloned and characterized two cyclooxygenase (COX) isoforms in the coral Plexaura homomalla that share 97% amino acid sequence identity, yet form prostaglandins with opposite stereochemistry at carbon 15. The difference in oxygenation specificity is only partially accounted for by the single amino acid substitution in the active site (Ile or Val at position 349). For further elucidation of residues involved in the C-15 stereocontrol, a series of sequence swapping and site-directed mutagenesis experiments between 15R- and 15S-COX were performed. Our results show that the change in stereochemistry at carbon 15 of prostaglandins relates mainly to five amino acid substitutions on helices 5 and 6 of the coral COX. In COX proteins, these helices form a helix-turn-helix motif that traverses through the entire protein, contributing to the second shell of residues around the oxygenase active site; it constitutes the most highly conserved region where even slight changes result in loss of catalytic activity. The finding that this region is among the least conserved between the P. homomalla 15S- and 15R-specific COX further supports its significance in maintaining the desired prostaglandin stereochemistry at C-15. The results are particularly remarkable because, based on its strong conservation, the conserved middle of helix 5 is considered as central to the core structure of peroxidases, of which COX proteins are derivatives. Now we show that the same parts of the protein are involved in the control of oxygenation with 15R or 15S stereospecificity in the dioxygenase active site.


2017 ◽  
Author(s):  
Yu-Hsiu T. Lin ◽  
Cheng Lai Victor Huang ◽  
Christina Ho ◽  
Max Shatsky ◽  
Jack F. Kirsch

ABSTRACTOver the past thirty years, site-directed mutagenesis has become established as one of the most powerful techniques to probe enzyme reaction mechanisms1-3. Substitutions of active site residues are most likely to yield significant perturbations in kinetic parameters, but there are many examples of profound changes in these values elicited by remote mutations4-6. Ortholog comparisons of extant sequences show that many mutations do not have profound influence on enzyme function. As the number of potential single natural amino acid substitutions that can be introduced in a protein of N amino acids in length by directed mutation is very large (19 * N), it would be useful to have a method to predict which amino acid substitutions are more likely to introduce significant changes in kinetic parameters in order to design meaningful probes into enzyme function. What is especially desirable is the identification of critical residues that do not contact the substrate directly, and may be remote from the active site.We collected literature data reflecting the effects of 2,804 mutations on kinetic properties for 12 enzymes. These data along with characteristic predictors were used in a machine-learning scheme to train a classifier to predict the effect of mutation. Use of this algorithm allows one to predict with a 2.5-fold increase in precision, if a given mutation, made anywhere in the enzyme, will cause a decrease in kcat/Km value of ≥ 95%. The improved precision allows the experimentalist to reduce the number of mutations necessary to probe the enzyme reaction mechanism.


Author(s):  
Quynh DangThu ◽  
Thu-Thuy Nguyen ◽  
Sei-Heon Jang ◽  
ChangWoo Lee

Abstract Sugar alcohols (polyols) have important roles as nutrients, anti-freezing agents, and scavengers of free radicals in cold-adapted bacteria, but the characteristics of polyol dehydrogenases in cold-adapted bacteria remain largely unknown. In this study, based on the observation that a cold-adapted bacterium Pseudomonas mandelii JR-1 predominantly utilized D-sorbitol as its carbon source, among the four polyols examined (D-galactitol, D-mannitol, D-sorbitol, or D-xylitol), we cloned and characterized a sorbitol dehydrogenase (SDH, EC 1.1.1.14) belonging to the short-chain dehydrogenase/reductase family from this bacterium (the SDH hereafter referred to as PmSDH). PmSDH contained Asn111, Ser140, Tyr153, and Lys157 as catalytic active site residues and existed as a ∼67 kDa dimer in size-exclusion chromatography. PmSDH converted D-sorbitol to D-fructose using NAD+ as a coenzyme and, vice versa, D-fructose to D-sorbitol using NADH as a coenzyme. PmSDH maintained its conformational flexibility, secondary and tertiary structures, and thermal stability at 4–25°C. At 40°C, PmSDH was rapidly denatured. These results indicate that PmSDH, which has a flexible structure and a high catalytic activity at colder temperatures, is well-suited to sorbitol utilization in the cold-adapted bacterium P. mandelii JR-1.


2009 ◽  
Vol 90 (7) ◽  
pp. 1741-1747 ◽  
Author(s):  
Tahir H. Malik ◽  
Candie Wolbert ◽  
Laura Nerret ◽  
Christian Sauder ◽  
Steven Rubin

It has previously been shown that three amino acid changes, one each in the fusion (F; Ala/Thr-91→Thr), haemagglutinin–neuraminidase (HN; Ser-466→Asn) and polymerase (L; Ile-736→Val) proteins, are associated with attenuation of a neurovirulent clinical isolate of mumps virus (88-1961) following serial passage in vitro. Here, using full-length cDNA plasmid clones and site-directed mutagenesis, it was shown that the single amino acid change in the HN protein and to a lesser extent, the change in the L protein, resulted in neuroattenuation, as assessed in rats. The combination of both amino acid changes caused neuroattenuation of the virus to levels previously reported for the clinical isolate following attenuation in vitro. The amino acid change in the F protein, despite having a dramatic effect on protein function in vitro, was previously shown to not be involved in the observed neuroattenuation, highlighting the importance of conducting confirmatory in vivo studies. This report provides additional supporting evidence for the role of the HN protein as a virulence factor and, as far as is known, is the first report to associate an amino acid change in the L protein with mumps virus neuroattenuation.


2005 ◽  
Vol 79 (20) ◽  
pp. 12721-12731 ◽  
Author(s):  
Ákos Putics ◽  
Witold Filipowicz ◽  
Jonathan Hall ◽  
Alexander E. Gorbalenya ◽  
John Ziebuhr

ABSTRACT Replication of the ∼30-kb plus-strand RNA genome of coronaviruses and synthesis of an extensive set of subgenome-length RNAs are mediated by the replicase-transcriptase, a membrane-bound protein complex containing several cellular proteins and up to 16 viral nonstructural proteins (nsps) with multiple enzymatic activities, including protease, polymerase, helicase, methyltransferase, and RNase activities. To get further insight into the replicase gene-encoded functions, we characterized the coronavirus X domain, which is part of nsp3 and has been predicted to be an ADP-ribose-1"-monophosphate (Appr-1"-p) processing enzyme. Bacterially expressed forms of human coronavirus 229E (HCoV-229E) and severe acute respiratory syndrome-coronavirus X domains were shown to dephosphorylate Appr-1"-p, a side product of cellular tRNA splicing, to ADP-ribose in a highly specific manner. The enzyme had no detectable activity on several other nucleoside phosphates. Guided by the crystal structure of AF1521, an X domain homolog from Archaeoglobus fulgidus, potential active-site residues of the HCoV-229E X domain were targeted by site-directed mutagenesis. The data suggest that the HCoV-229E replicase polyprotein residues, Asn 1302, Asn 1305, His 1310, Gly 1312, and Gly 1313, are part of the enzyme's active site. Characterization of an Appr-1"-pase-deficient HCoV-229E mutant revealed no significant effects on viral RNA synthesis and virus titer, and no reversion to the wild-type sequence was observed when the mutant virus was passaged in cell culture. The apparent dispensability of the conserved X domain activity in vitro indicates that coronavirus replicase polyproteins have evolved to include nonessential functions. The biological significance of the novel enzymatic activity in vivo remains to be investigated.


2018 ◽  
Vol 399 (10) ◽  
pp. 1223-1235 ◽  
Author(s):  
Andreas Porodko ◽  
Ana Cirnski ◽  
Drazen Petrov ◽  
Teresa Raab ◽  
Melanie Paireder ◽  
...  

Abstract The genome of the model plant Arabidopsis thaliana encodes three paralogues of the papain-like cysteine proteinase cathepsin B (AtCathB1, AtCathB2 and AtCathB3), whose individual functions are still largely unknown. Here we show that a mutated splice site causes severe truncations of the AtCathB1 polypeptide, rendering it catalytically incompetent. By contrast, AtCathB2 and AtCathB3 are effective proteases which display comparable hydrolytic properties and share most of their substrate specificities. Site-directed mutagenesis experiments demonstrated that a single amino acid substitution (Gly336→Glu) is sufficient to confer AtCathB2 with the capacity to tolerate arginine in its specificity-determining S2 subsite, which is otherwise a hallmark of AtCathB3-mediated cleavages. A degradomics approach utilizing proteome-derived peptide libraries revealed that both enzymes are capable of acting as endopeptidases and exopeptidases, releasing dipeptides from the C-termini of substrates. Mutation of the carboxydipeptidase determinant His207 also affected the activity of AtCathB2 towards non-exopeptidase substrates, highlighting mechanistic differences between plant and human cathepsin B. This was also noted in molecular modeling studies which indicate that the occluding loop defining the dual enzymatic character of cathepsin B does not obstruct the active-site cleft of AtCathB2 to the same extent as in its mammalian orthologues.


Author(s):  
Ryuji Yamazawa ◽  
Ritsuko Kuwana ◽  
Kenji Takeuchi ◽  
Hiromu Takamatsu ◽  
Yoshitaka Nakajima ◽  
...  

Abstract In order to characterize the probable protease gene yabG found in the genomes of spore-forming bacteria, Bacillus subtilis yabG was expressed as a 35 kDa His-tagged protein (BsYabG) in Escherichia coli cells. During purification using Ni-affinity chromatography, the 35 kDa protein was degraded via several intermediates to form a 24 kDa protein. Furthermore, it was degraded after an extended incubation period. The effect of protease inhibitors, including certain chemical modification reagents, on the conversion of the 35 kDa protein to the 24 kDa protein was investigated. Reagents reacting with sulfhydryl groups exerted significant effects, strongly suggesting that the yabG gene product is a cysteine protease with autolytic activity. Site-directed mutagenesis of the conserved Cys and His residues indicated that Cys218 and His172 are active site residues. No degradation was observed in the C218A/S and H172A mutants. In addition to the chemical modification reagents, benzamidine inhibited the degradation of the 24 kDa protein. Determination of the N-terminal amino acid sequences of the intermediates revealed trypsin-like specificity for YabG protease. Based on the relative positions of His172 and Cys218 and their surrounding sequences, we propose the classification of YabG as a new family of clan CD in the Merops peptidase database.


1986 ◽  
Vol 163 (2) ◽  
pp. 463-468 ◽  
Author(s):  
A Köck ◽  
M Danner ◽  
B M Stadler ◽  
T A Luger

Human IL-1 was successfully used to produce an anti-IL-1 mAb. Anti-IL-1 (IgG2a) blocked IL-1-mediated thymocyte and fibroblast proliferation, but did not interfere with the biological effects of other lymphokines, such as IL-2 or IL-3. The antibody immunoprecipitated biosynthetically radiolabeled 33, 17, and 4 kD IL-1. An immunoadsorbent column yielded 20% of initial activity, and upon HPLC size-exclusion chromatography, affinity-purified IL-1 had a molecular mass of approximately 4 kD. These results provide first evidence of a monoclonal anti-IL-1 that reacts with different species of IL-1 and apparently binds to an epitope close to the active site of IL-1. Thus, anti-IL-1 IgG may be very helpful for further investigations of the molecular as well as biological characteristics of IL-1 and related mediators.


Sign in / Sign up

Export Citation Format

Share Document