scholarly journals The tumour-suppressor function of PTEN requires an N-terminal lipid-binding motif

2004 ◽  
Vol 379 (2) ◽  
pp. 301-307 ◽  
Author(s):  
Steven M. WALKER ◽  
Nick R. LESLIE ◽  
Nevin M. PERERA ◽  
Ian H. BATTY ◽  
C. Peter DOWNES

The PTEN (phosphatase and tensin homologue deleted on chromosome 10) tumour-suppressor protein is a phosphoinositide 3-phosphatase which antagonizes phosphoinositide 3-kinase-dependent signalling by dephosphorylating PtdIns(3,4,5)P3. Most tumour-derived point mutations of PTEN induce a loss of function, which correlates with profoundly reduced catalytic activity. However, here we characterize a point mutation at the N-terminus of PTEN, K13E from a human glioblastoma, which displayed wild-type activity when assayed in vitro. This mutation occurs within a conserved polybasic motif, a putative PtdIns(4,5)P2-binding site that may participate in membrane targeting of PTEN. We found that catalytic activity against lipid substrates and vesicle binding of wild-type PTEN, but not of PTEN K13E, were greatly stimulated by anionic lipids, especially PtdIns(4,5)P2. The K13E mutation also greatly reduces the efficiency with which anionic lipids inhibit PTEN activity against soluble substrates, supporting the hypothesis that non-catalytic membrane binding orientates the active site to favour lipid substrates. Significantly, in contrast to the wild-type enzyme, PTEN K13E failed either to prevent protein kinase B/Akt phosphorylation, or inhibit cell proliferation when expressed in PTEN-null U87MG cells. The cellular functioning of K13E PTEN was recovered by targeting to the plasma membrane through inclusion of a myristoylation site. Our results establish a requirement for the conserved N-terminal motif of PTEN for correct membrane orientation, cellular activity and tumour-suppressor function.

2004 ◽  
Vol 32 (2) ◽  
pp. 355-359 ◽  
Author(s):  
J. Kaufmann ◽  
G. Pronk ◽  
K. Giese ◽  
A. Klippel

Conventional approaches to identifying cancer targets are complicated by the chromosomal instability of tumour cells, and typically result in a large number of differentially expressed candidate genes with uncertain disease relevance. Here we present a novel approach which aims to elucidate the molecular changes that are induced after loss of tumour suppressor function. Using gene silencing tools, we mimic the loss of tumour suppressor function to identify key regulators of tumour initiation and progression. Loss of function of the tumour suppressor PTEN (phosphatase and tensin homologue deleted on chromosome 10) correlates with increased invasive cell growth due to the resulting chronic activation of the PI 3-kinase (phosphoinositide 3-kinase) pathway. Induced activation of PI 3-kinase either by inhibiting PTEN expression or by using p110*, a constitutively active PI 3-kinase, increased signalling and the invasive growth potential of cells. Using this unbiased approach we have identified novel downstream effectors of PI 3-kinase/PTEN signalling that mediate the behaviour of cells with a hyperactive PI 3-kinase pathway. These molecules represent candidate targets for therapeutic intervention in patients with PTEN-deficient tumours.


2020 ◽  
Vol 65 (1) ◽  
pp. e01948-20
Author(s):  
Dalin Rifat ◽  
Si-Yang Li ◽  
Thomas Ioerger ◽  
Keshav Shah ◽  
Jean-Philippe Lanoix ◽  
...  

ABSTRACTThe nitroimidazole prodrugs delamanid and pretomanid comprise one of only two new antimicrobial classes approved to treat tuberculosis (TB) in 50 years. Prior in vitro studies suggest a relatively low barrier to nitroimidazole resistance in Mycobacterium tuberculosis, but clinical evidence is limited to date. We selected pretomanid-resistant M. tuberculosis mutants in two mouse models of TB using a range of pretomanid doses. The frequency of spontaneous resistance was approximately 10−5 CFU. Whole-genome sequencing of 161 resistant isolates from 47 mice revealed 99 unique mutations, of which 91% occurred in 1 of 5 genes previously associated with nitroimidazole activation and resistance, namely, fbiC (56%), fbiA (15%), ddn (12%), fgd (4%), and fbiB (4%). Nearly all mutations were unique to a single mouse and not previously identified. The remaining 9% of resistant mutants harbored mutations in Rv2983 (fbiD), a gene not previously associated with nitroimidazole resistance but recently shown to be a guanylyltransferase necessary for cofactor F420 synthesis. Most mutants exhibited high-level resistance to pretomanid and delamanid, although Rv2983 and fbiB mutants exhibited high-level pretomanid resistance but relatively small changes in delamanid susceptibility. Complementing an Rv2983 mutant with wild-type Rv2983 restored susceptibility to pretomanid and delamanid. By quantifying intracellular F420 and its precursor Fo in overexpressing and loss-of-function mutants, we provide further evidence that Rv2983 is necessary for F420 biosynthesis. Finally, Rv2983 mutants and other F420H2-deficient mutants displayed hypersusceptibility to some antibiotics and to concentrations of malachite green found in solid media used to isolate and propagate mycobacteria from clinical samples.


2019 ◽  
Vol 116 (50) ◽  
pp. 25322-25328 ◽  
Author(s):  
Yi Liu ◽  
Xiaopin Ma ◽  
Hisashi Fujioka ◽  
Jun Liu ◽  
Shengdi Chen ◽  
...  

Loss-of-function mutations in DJ-1 are associated with autosomal recessive early onset Parkinson’s disease (PD), yet the underlying pathogenic mechanism remains elusive. Here we demonstrate that DJ-1 localized to the mitochondria-associated membrane (MAM) both in vitro and in vivo. In fact, DJ-1 physically interacts with and is an essential component of the IP3R3-Grp75-VDAC1 complexes at MAM. Loss of DJ-1 disrupted the IP3R3-Grp75-VDAC1 complex and led to reduced endoplasmic reticulum (ER)-mitochondria association and disturbed function of MAM and mitochondria in vitro. These deficits could be rescued by wild-type DJ-1 but not by the familial PD-associated L166P mutant which had demonstrated reduced interaction with IP3R3-Grp75. Furthermore, DJ-1 ablation disturbed calcium efflux-induced IP3R3 degradation after carbachol treatment and caused IP3R3 accumulation at the MAM in vitro. Importantly, similar deficits in IP3R3-Grp75-VDAC1 complexes and MAM were found in the brain of DJ-1 knockout mice in vivo. The DJ-1 level was reduced in the substantia nigra of sporadic PD patients, which was associated with reduced IP3R3-DJ-1 interaction and ER-mitochondria association. Together, these findings offer insights into the cellular mechanism in the involvement of DJ-1 in the regulation of the integrity and calcium cross-talk between ER and mitochondria and suggests that impaired ER-mitochondria association could contribute to the pathogenesis of PD.


Oncogene ◽  
2018 ◽  
Vol 38 (14) ◽  
pp. 2658-2674 ◽  
Author(s):  
Brian Flood ◽  
Joan Manils ◽  
Ciara Nulty ◽  
Ewelina Flis ◽  
Sinead Kenealy ◽  
...  

2007 ◽  
Vol 43 (1) ◽  
pp. 202-209 ◽  
Author(s):  
Wendy Liu ◽  
Shu-Ling Liang ◽  
Hongli Liu ◽  
Robert Silverman ◽  
Aimin Zhou

2019 ◽  
Author(s):  
Feng Xue ◽  
Tianying Wei ◽  
Junhui Sun ◽  
Yuqin Luo ◽  
Yanan Huo ◽  
...  

Abstract Background: Leber congenital amaurosis (LCA) is a group of severe congenital neurodegenerative diseases. Variants in guanylate cyclase 2D (GUCY2D), which encoded guanylate cyclase protein (ROS-GC1) associate with LCA1, accounting for 6–21% of all LCA cases. Methods: In this study, one family with LCA1 was recruited from China. A combination of next-generation sequencing (NGS) and Sanger sequencing was used for disease-causing mutations screening. Additionally, immunohistochemistry and HPLC-coupled tandem mass-spectrometry (HPLC-MS/MS) were used to confirm the cellular location and catalytic activity of ROS-GC1 mutants, respectively. Results: We found three novel mutations (c.139_139delC, c.835G>A and c.2783G>A) in GUCY2D gene. The results showed that mutation c.139_139delC results in a truncated protein and destroys the structure of ROS-GC1 protein. Mutations c.835G>A and c.2783G>A exert no effects on cellular location, whereas significantly reduce the catalytic activity of ROS-GC1. Conclusions: Our findings highlight the clinical range of LCA. Moreover we used HPLC-MS/MS to analyze the concentration of 3', 5'-cyclic guanosine monophosphate (cGMP), suggesting that HPLC-MS/MS can be an effective alternative method to evaluate the catalytic activity of wild type (wt) and mutant ROS-GC1.


2006 ◽  
Vol 394 (1) ◽  
pp. 163-171 ◽  
Author(s):  
Sandra Müller ◽  
Jennifer Disse ◽  
Manuela Schöttler ◽  
Sylvia Schön ◽  
Christian Prante ◽  
...  

Human XT-I (xylosyltransferase I; EC 2.4.2.26) initiates the biosynthesis of the glycosaminoglycan linkage region and is a diagnostic marker of an enhanced proteoglycan biosynthesis. In the present study, we have investigated mutant enzymes of human XT-I and assessed the impact of the N-terminal region on the enzymatic activity. Soluble mutant enzymes of human XT-I with deletions at the N-terminal domain were expressed in insect cells and analysed for catalytic activity. As many as 260 amino acids could be truncated at the N-terminal region of the enzyme without affecting its catalytic activity. However, truncation of 266, 272 and 273 amino acids resulted in a 70, 90 and >98% loss in catalytic activity. Interestingly, deletion of the single 12 amino acid motif G261KEAISALSRAK272 leads to a loss-of-function XT-I mutant. This is in agreement with our findings analysing the importance of the Cys residues where we have shown that C276A mutation resulted in a nearly inactive XT-I enzyme. Moreover, we investigated the location of the heparin-binding site of human XT-I using the truncated mutants. Heparin binding was observed to be slightly altered in mutants lacking 289 or 568 amino acids, but deletion of the potential heparin-binding motif P721KKVFKI727 did not lead to a loss of heparin binding capacity. The effect of heparin or UDP on the XT-I activity of all mutants was not significantly different from that of the wild-type. Our study demonstrates that over 80% of the nucleotide sequence of the XT-I-cDNA is necessary for expressing a recombinant enzyme with full catalytic activity.


Biomolecules ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1452
Author(s):  
Li Zheng ◽  
Sylvie Chenavas ◽  
Fabien Kieken ◽  
Andrew Trease ◽  
Sarah Brownell ◽  
...  

The autosomal-dominant pleiotropic disorder called oculodentodigital dysplasia (ODDD) is caused by mutations in the gap junction protein Cx43. Of the 73 mutations identified to date, over one-third are localized in the cytoplasmic loop (Cx43CL) domain. Here, we determined the mechanism by which three ODDD mutations (M147T, R148Q, and T154A), all of which localize within the predicted 1-5-10 calmodulin-binding motif of the Cx43CL, manifest the disease. Nuclear magnetic resonance (NMR) and circular dichroism revealed that the three ODDD mutations had little-to-no effect on the ability of the Cx43CL to form α-helical structure as well as bind calmodulin. Combination of microscopy and a dye-transfer assay uncovered these mutations increased the intracellular level of Cx43 and those that trafficked to the plasma membrane did not form functional channels. NMR also identify that CaM can directly interact with the Cx43CT domain. The Cx43CT residues involved in the CaM interaction overlap with tyrosines phosphorylated by Pyk2 and Src. In vitro and in cyto data provide evidence that the importance of the CaM interaction with the Cx43CT may lie in restricting Pyk2 and Src phosphorylation, and their subsequent downstream effects.


Plants ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 99 ◽  
Author(s):  
G. H. M. Sagor ◽  
Tomonobu Kusano ◽  
Thomas Berberich

Of the five polyamine oxidases in Arabidopsis thaliana, AtPAO5 has a substrate preference for the tetraamine thermospermine (T-Spm) which is converted to triamine spermidine (Spd) in a back-conversion reaction in vitro. A homologue of AtPAO5 from the lycophyte Selaginella lepidophylla (SelPAO5) back-converts T-Spm to the uncommon polyamine norspermidine (NorSpd) instead of Spd. An Atpao5 loss-of-function mutant shows a strong reduced growth phenotype when growing on a T-Spm containing medium. When SelPAO5 was expressed in the Atpao5 mutant, T-Spm level decreased to almost normal values of wild type plants, and NorSpd was produced. Furthermore the reduced growth phenotype was cured by the expression of SelPAO5. Thus, a NorSpd synthesis pathway by PAO reaction and T-Spm as substrate was demonstrated in planta and the assumption that a balanced T-Spm homeostasis is needed for normal growth was strengthened.


Oncogene ◽  
2004 ◽  
Vol 23 (53) ◽  
pp. 8688-8694 ◽  
Author(s):  
Daniela Grifoni ◽  
Flavio Garoia ◽  
Christoph C Schimanski ◽  
Gösta Schmitz ◽  
Elisa Laurenti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document