scholarly journals Defective insulin receptor activation and altered lipid rafts in Niemann–Pick type C disease hepatocytes

2005 ◽  
Vol 391 (3) ◽  
pp. 465-472 ◽  
Author(s):  
Saara Vainio ◽  
Igor Bykov ◽  
Martin Hermansson ◽  
Eija Jokitalo ◽  
Pentti Somerharju ◽  
...  

Niemann–Pick type C (NPC) disease is a neuro-visceral cholesterol storage disorder caused by mutations in the NPC-1 or NPC-2 gene. In the present paper, we studied IR (insulin receptor) activation and the plasma-membrane lipid assembly in primary hepatocytes from control and NPC1–/– mice. We have previously reported that, in hepatocytes, IR activation is dependent on cholesterol–sphingolipid rafts [Vainio, Heino, Mansson, Fredman, Kuismanen, Vaarala and Ikonen (2002) EMBO Rep. 3, 95–100]. We found that, in NPC hepatocytes, IR levels were up-regulated and the receptor activation was compromised. Defective IR activation was reproduced in isolated NPC plasma-membrane preparations, which displayed an increased cholesterol content and saturation of major phospholipids. The NPC plasma membranes were less fluid than control membranes as indicated by increased DPH (1,6-diphenyl-1,3,5-hexatriene) fluorescence anisotropy values. Both in NPC hepatocytes and plasma-membrane fractions, the association of IR with low-density DRMs (detergent-resistant membranes) was increased. Moreover, the detergent resistance of both cholesterol and phosphatidylcholine were increased in NPC membranes. Finally, cholesterol removal inhibited IR activation in control membranes but restored IR activation in NPC membranes. Taken together, the results reveal a lipid imbalance in the NPC hepatocyte, which increases lipid ordering in the plasma membrane, alters the properties of lipid rafts and interferes with the function of a raft-associated plasma-membrane receptor. Such a mechanism may participate in the pathogenesis of NPC disease and contribute to insulin resistance in other disorders of lipid metabolism.

2000 ◽  
Vol 11 (5) ◽  
pp. 1645-1655 ◽  
Author(s):  
Anne K. Kenworthy ◽  
Nadezda Petranova ◽  
Michael Edidin

“Lipid rafts” enriched in glycosphingolipids (GSL), GPI-anchored proteins, and cholesterol have been proposed as functional microdomains in cell membranes. However, evidence supporting their existence has been indirect and controversial. In the past year, two studies used fluorescence resonance energy transfer (FRET) microscopy to probe for the presence of lipid rafts; rafts here would be defined as membrane domains containing clustered GPI-anchored proteins at the cell surface. The results of these studies, each based on a single protein, gave conflicting views of rafts. To address the source of this discrepancy, we have now used FRET to study three different GPI-anchored proteins and a GSL endogenous to several different cell types. FRET was detected between molecules of the GSL GM1 labeled with cholera toxin B-subunit and between antibody-labeled GPI-anchored proteins, showing these raft markers are in submicrometer proximity in the plasma membrane. However, in most cases FRET correlated with the surface density of the lipid raft marker, a result inconsistent with significant clustering in microdomains. We conclude that in the plasma membrane, lipid rafts either exist only as transiently stabilized structures or, if stable, comprise at most a minor fraction of the cell surface.


Acta Naturae ◽  
2016 ◽  
Vol 8 (1) ◽  
pp. 58-73 ◽  
Author(s):  
A. M. Petrov ◽  
M. R. Kasimov ◽  
A. L. Zefirov

Cholesterol is an important constituent of cell membranes and plays a crucial role in the compartmentalization of the plasma membrane and signaling. Brain cholesterol accounts for a large proportion of the bodys total cholesterol, existing in two pools: the plasma membranes of neurons and glial cells and the myelin membranes . Cholesterol has been recently shown to be important for synaptic transmission, and a link between cholesterol metabolism defects and neurodegenerative disorders is now recognized. Many neurodegenerative diseases are characterized by impaired cholesterol turnover in the brain. However, at which stage the cholesterol biosynthetic pathway is perturbed and how this contributes to pathogenesis remains unknown. Cognitive deficits and neurodegeneration may be associated with impaired synaptic transduction. Defects in cholesterol biosynthesis can trigger dysfunction of synaptic transmission. In this review, an overview of cholesterol turnover under physiological and pathological conditions is presented (Huntingtons, Niemann-Pick type C diseases, Smith-Lemli-Opitz syndrome). We will discuss possible mechanisms by which cholesterol content in the plasma membrane influences synaptic processes. Changes in cholesterol metabolism in Alzheimers disease, Parkinsons disease, and autistic disorders are beyond the scope of this review and will be summarized in our next paper.


1986 ◽  
Vol 236 (2) ◽  
pp. 535-542 ◽  
Author(s):  
K M Lerea ◽  
J N Livingston

Insulin receptors derived from highly purified rat liver plasma membranes and Golgi membranes showed differences in insulin-mediated receptor autophosphorylation, even though their insulin-binding characteristics were similar. This difference was related to the generation of a Mr-84,000 fragment of the Mr-90,000 beta subunit of the plasma-membrane receptor, a fragment that was not present in the receptor from Golgi membranes, in the absence of a change in the insulin-binding alpha subunit. When autophosphorylation activity was based on insulin binding, the activity of the plasma-membrane-derived insulin receptor was decreased to 25-30% that of the Golgi-derived receptor. Endoglycosidase F digestion produced changes in the Mr values for both species, but they were not converted into a single subunit, thereby suggesting differences in the protein component of the two subunits. Although the proteinase inhibitors phenylmethanesulphonyl fluoride, ovomucoid and aprotinin failed to block the formation of the Mr-84,000 fragment, the presence of iodoacetamide or EDTA during liver homogenization markedly inhibited fragment generation and allowed the plasma-membrane insulin receptor to retain an autophosphorylation activity comparable with that present in insulin receptors from Golgi membranes. Thus a thiol-sensitive, cation-dependent, degrading activity has been identified that can uncouple the insulin-binding activity of the plasma-membrane insulin receptor from its tyrosine kinase activity.


2021 ◽  
Vol 22 (13) ◽  
pp. 6978
Author(s):  
Maria J. Iraburu ◽  
Tommy Garner ◽  
Cristina Montiel-Duarte

The endocytosis of ligand-bound receptors and their eventual recycling to the plasma membrane (PM) are processes that have an influence on signalling activity and therefore on many cell functions, including migration and proliferation. Like other tyrosine kinase receptors (TKR), the insulin receptor (INSR) has been shown to be endocytosed by clathrin-dependent and -independent mechanisms. Once at the early endosome (EE), the sorting of the receptor, either to the late endosome (LE) for degradation or back to the PM through slow or fast recycling pathways, will determine the intensity and duration of insulin effects. Both the endocytic and the endosomic pathways are regulated by many proteins, the Arf and Rab families of small GTPases being some of the most relevant. Here, we argue for a specific role for the slow recycling route, whilst we review the main molecular mechanisms involved in INSR endocytosis, sorting and recycling, as well as their possible role in cell functions.


2005 ◽  
Vol 79 (11) ◽  
pp. 7077-7086 ◽  
Author(s):  
Erica L. Brown ◽  
Douglas S. Lyles

ABSTRACT Many plasma membrane components are organized into detergent-resistant membrane microdomains referred to as lipid rafts. However, there is much less information about the organization of membrane components into microdomains outside of lipid rafts. Furthermore, there are few approaches to determine whether different membrane components are colocalized in microdomains as small as lipid rafts. We have previously described a new method of determining the extent of organization of proteins into membrane microdomains by analyzing the distribution of pairwise distances between immunogold particles in immunoelectron micrographs. We used this method to analyze the microdomains involved in the incorporation of the T-cell antigen CD4 into the envelope of vesicular stomatitis virus (VSV). In cells infected with a recombinant virus that expresses CD4 from the viral genome, both CD4 and the VSV envelope glycoprotein (G protein) were found in detergent-soluble (nonraft) membrane fractions. However, analysis of the distribution of CD4 and G protein in plasma membranes by immunoelectron microscopy showed that both were organized into membrane microdomains of similar sizes, approximately 100 to 150 nm. In regions of plasma membrane outside of virus budding sites, CD4 and G protein were present in separate membrane microdomains, as shown by double-label immunoelectron microscopy data. However, virus budding occurred from membrane microdomains that contained both G protein and CD4, and extended to approximately 300 nm, indicating that VSV pseudotype formation with CD4 occurs by clustering of G protein- and CD4-containing microdomains.


2003 ◽  
Vol 4 (2) ◽  
pp. 69 ◽  
Author(s):  
W. Jessup ◽  
K. Gaus ◽  
L. Kritharides ◽  
A. Boettcher ◽  
W. Drobnik ◽  
...  

2003 ◽  
Vol 160 (3) ◽  
pp. 295-296 ◽  
Author(s):  
Teymuras Kurzchalia

Anthrax toxin binds to a plasma membrane receptor and after endocytosis exerts its deadly effects on the cell. Until now, however, the mechanism of initial toxin uptake was unknown. In this issue, Abrami et al. (2003) demonstrate that toxin oligomerization clusters the anthrax receptor into lipid rafts and this complex is internalized via the clathrin-dependent pathway.


2020 ◽  
Vol 14 (1) ◽  
pp. 34-47
Author(s):  
Hironori Tsuchiya ◽  
Maki Mizogami

Introduction: Plasma membranes are not the homogeneous bilayers of uniformly distributed lipids but the lipid complex with laterally separated lipid raft membrane domains, which provide receptor, ion channel and enzyme proteins with a platform. The aim of this article is to review the mechanistic interaction of drugs with membrane lipid rafts and address the question whether drugs induce physicochemical changes in raft-constituting and raft-surrounding membranes. Methods: Literature searches of PubMed/MEDLINE and Google Scholar databases from 2000 to 2020 were conducted to include articles published in English in internationally recognized journals. Collected articles were independently reviewed by title, abstract and text for relevance. Results: The literature search indicated that pharmacologically diverse drugs interact with raft model membranes and cellular membrane lipid rafts. They could physicochemically modify functional protein-localizing membrane lipid rafts and the membranes surrounding such domains, affecting the raft organizational integrity with the resultant exhibition of pharmacological activity. Raft-acting drugs were characterized as ones to decrease membrane fluidity, induce liquid-ordered phase or order plasma membranes, leading to lipid raft formation; and ones to increase membrane fluidity, induce liquid-disordered phase or reduce phase transition temperature, leading to lipid raft disruption. Conclusion: Targeting lipid raft membrane domains would open a new way for drug design and development. Since angiotensin-converting enzyme 2 receptors which are a cell-specific target of and responsible for the cellular entry of novel coronavirus are localized in lipid rafts, agents that specifically disrupt the relevant rafts may be a drug against coronavirus disease 2019.


Sign in / Sign up

Export Citation Format

Share Document