scholarly journals Structural and kinetic analyses of the H121A mutant of cholesterol oxidase

2006 ◽  
Vol 400 (1) ◽  
pp. 13-22 ◽  
Author(s):  
Louis Lim ◽  
Gianluca Molla ◽  
Nicole Guinn ◽  
Sandro Ghisla ◽  
Loredano Pollegioni ◽  
...  

Cholesterol oxidase is a monomeric flavoenzyme that catalyses the oxidation of cholesterol to cholest-5-en-3-one followed by isomerization to cholest-4-en-3-one. The enzyme from Brevibacterium sterolicum contains the FAD cofactor covalently bound to His121. It was previously demonstrated that the H121A substitution results in a ≈100 mV decrease in the midpoint redox potential and a ≈40-fold decrease in turnover number compared to wild-type enzyme [Motteran, Pilone, Molla, Ghisla and Pollegioni (2001) Journal of Biological Chemistry 276, 18024–18030]. A detailed kinetic analysis of the H121A mutant enzyme shows that the decrease in turnover number is largely due to a corresponding decrease in the rate constant of flavin reduction, whilst the re-oxidation reaction is only marginally altered and the isomerization reaction is not affected by the substitution and precedes product dissociation. The X-ray structure of the mutant protein, determined to 1.7 Å resolution (1 Å≡0.1 nm), reveals only minor changes in the overall fold of the protein, namely: two loops have slight movements and a tryptophan residue changes conformation by a rotation of 180° about χ1 compared to the native enzyme. Comparison of the isoalloxazine ring moiety of the FAD cofactor between the structures of the native and mutant proteins shows a change from a non-planar to a planar geometry (resulting in a more tetrahedral-like geometry for N5). This change is proposed to be a major factor contributing to the observed alteration in redox potential. Since a similar distortion of the flavin has not been observed in other covalent flavoproteins, it is proposed to represent a specific mode to facilitate flavin reduction in covalent cholesterol oxidase.

2014 ◽  
Vol 70 (11) ◽  
pp. 2913-2923 ◽  
Author(s):  
Evgeny Osipov ◽  
Konstantin Polyakov ◽  
Roman Kittl ◽  
Sergey Shleev ◽  
Pavel Dorovatovsky ◽  
...  

Laccases are members of a large family of multicopper oxidases that catalyze the oxidation of a wide range of organic and inorganic substrates accompanied by the reduction of dioxygen to water. These enzymes contain four Cu atoms per molecule organized into three sites: T1, T2 and T3. In all laccases, the T1 copper ion is coordinated by two histidines and one cysteine in the equatorial plane and is covered by the side chains of hydrophobic residues in the axial positions. The redox potential of the T1 copper ion influences the enzymatic reaction and is determined by the nature of the axial ligands and the structure of the second coordination sphere. In this work, the laccase from the ascomyceteBotrytis acladawas studied, which contains conserved Ile491 and nonconserved Leu499 residues in the axial positions. The three-dimensional structures of the wild-type enzyme and the L499M mutant were determined by X-ray crystallography at 1.7 Å resolution. Crystals suitable for X-ray analysis could only be grown after deglycosylation. Both structures did not contain the T2 copper ion. The catalytic properties of the enzyme were characterized and the redox potentials of both enzyme forms were determined:E0= 720 and 580 mV for the wild-type enzyme and the mutant, respectively. Since the structures of the wild-type and mutant forms are very similar, the change in the redox potential can be related to the L499M mutation in the T1 site of the enzyme.


2021 ◽  
Author(s):  
Nainy Goel ◽  
Kanika Dhiman ◽  
Nidhi Kalidas ◽  
Anwesha Mukhopadhyay ◽  
Ashish ◽  
...  

AbstractArtemisinin-resistant mutations in PfKelch13 identified worldwide are mostly confined to its BTB/POZ and KRP domains. To date, only two crystal structures of the BTB/POZ-KRP domains as tight dimers are available, which limits structure-based interpretations of its functionality. Our solution Small-Angle X-ray Scattering (SAXS) data driven shape restoration of larger length of protein brought forth that: i) PfKelch13 forms a stable hexamer in P6 symmetry, ii) interactions of the N-termini drive the hexameric assembly, and iii) the six KRP domains project independently in space, forming a cauldron-like architecture. While artemisinin-sensitive mutant A578S packed like the wild-type, hexameric assemblies of dominant artemisinin-resistant mutant proteins R539T and C580Y displayed detectable differences in spatial positioning of their BTB/POZ-KRP domains. Lastly, mapping of mutations known to enable artemisinin resistance explained that most mutations exist mainly in these domains because they are non-detrimental to assembly of mutant PfKelch13 and yet can alter the flux of downstream events essential for susceptibility to artemisinin.


2003 ◽  
Vol 47 (3) ◽  
pp. 1037-1046 ◽  
Author(s):  
Christian H. Gross ◽  
Jonathan D. Parsons ◽  
Trudy H. Grossman ◽  
Paul S. Charifson ◽  
Steven Bellon ◽  
...  

ABSTRACT DNA gyrase is a bacterial type II topoisomerase which couples the free energy of ATP hydrolysis to the introduction of negative supercoils into DNA. Amino acids in proximity to bound nonhydrolyzable ATP analog (AMP · PNP) or novobiocin in the gyrase B (GyrB) subunit crystal structures were examined for their roles in enzyme function and novobiocin resistance by site-directed mutagenesis. Purified Escherichia coli GyrB mutant proteins were complexed with the gyrase A subunit to form the functional A2B2 gyrase enzyme. Mutant proteins with alanine substitutions at residues E42, N46, E50, D73, R76, G77, and I78 had reduced or no detectable ATPase activity, indicating a role for these residues in ATP hydrolysis. Interestingly, GyrB proteins with P79A and K103A substitutions retained significant levels of ATPase activity yet demonstrated no DNA supercoiling activity, even with 40-fold more enzyme than the wild-type enzyme, suggesting that these amino acid side chains have a role in the coupling of the two activities. All enzymes relaxed supercoiled DNA to the same extent as the wild-type enzyme did, implying that only ATP-dependent reactions were affected. Mutant genes were examined in vivo for their abilities to complement a temperature-sensitive E. coli gyrB mutant, and the activities correlated well with the in vitro activities. We show that the known R136 novobiocin resistance mutations bestow a significant loss of inhibitor potency in the ATPase assay. Four new residues (D73, G77, I78, and T165) that, when changed to the appropriate amino acid, result in both significant levels of novobiocin resistance and maintain in vivo function were identified in E. coli.


1999 ◽  
Vol 343 (3) ◽  
pp. 525-531 ◽  
Author(s):  
Claire S. ALLARDYCE ◽  
Paul D. MCDONAGH ◽  
Lu-Yun LIAN ◽  
C. Roland WOLF ◽  
Gordon C. K. ROBERTS

Glutathione S-transferases (GSTs) play a key role in the metabolism of drugs and xenobiotics. To investigate the catalytic mechanism, substrate binding and catalysis by the wild-type and two mutants of GST A1-1 have been studied. Substitution of the ‘essential’ Tyr9 by phenylalanine leads to a marked decrease in the kcat for 1-chloro-2,4-dinitrobenzene (CDNB), but has no affect on kcat for ethacrynic acid. Similarly, removal of the C-terminal helix by truncation of the enzyme at residue 209 leads to a decrease in kcat for CDNB, but an increase in kcat for ethacrynic acid. The binding of a GSH analogue increases the affinity of the wild-type enzyme for CDNB, and increases the rate of the enzyme-catalysed conjugation of this substrate with the small thiols 2-mercaptoethanol and dithiothreitol. This suggests that GSH binding produces a conformational change which is transmitted to the binding site for the hydrophobic substrate, where it alters both the affinity for the substrate and the catalytic-centre activity (‘turnover number‘) for conjugation, perhaps by increasing the proportion of the substrate bound productively. Neither of these two effects of GSH analogues are seen in the C-terminally truncated enzyme, indicating a role for the C-terminal helix in the GSH-induced conformational change.


2009 ◽  
Vol 53 (10) ◽  
pp. 4464-4471 ◽  
Author(s):  
Carine Bebrone ◽  
Heinrich Delbrück ◽  
Michaël B. Kupper ◽  
Philipp Schlömer ◽  
Charlotte Willmann ◽  
...  

ABSTRACT Bacteria can defend themselves against β-lactam antibiotics through the expression of class B β-lactamases, which cleave the β-lactam amide bond and render the molecule harmless. There are three subclasses of class B β-lactamases (B1, B2, and B3), all of which require Zn2+ for activity and can bind either one or two zinc ions. Whereas the B1 and B3 metallo-β-lactamases are most active as dizinc enzymes, subclass B2 enzymes, such as Aeromonas hydrophila CphA, are inhibited by the binding of a second zinc ion. We crystallized A. hydrophila CphA in order to determine the binding site of the inhibitory zinc ion. X-ray data from zinc-saturated crystals allowed us to solve the crystal structures of the dizinc forms of the wild-type enzyme and N220G mutant. The first zinc ion binds in the cysteine site, as previously determined for the monozinc form of the enzyme. The second zinc ion occupies a slightly modified histidine site, where the conserved His118 and His196 residues act as metal ligands. This atypical coordination sphere probably explains the rather high dissociation constant for the second zinc ion compared to those observed with enzymes of subclasses B1 and B3. Inhibition by the second zinc ion results from immobilization of the catalytically important His118 and His196 residues, as well as the folding of the Gly232-Asn233 loop into a position that covers the active site.


1999 ◽  
Vol 340 (3) ◽  
pp. 711-714 ◽  
Author(s):  
Sebastien FARNAUD ◽  
Renée TATA ◽  
Maninder K. SOHI ◽  
Tommy WAN ◽  
Paul R. BROWN ◽  
...  

Wild-type and site-specific mutants C166S and C166A (Cys-166 → Ser and Cys-166 → Ala respectively) of the amidase (acylamide amidohydrolase, EC 3.5.1.4) from Pseudomonas aeruginosa were expressed in Escherichia coli by using the vector pKK223-3. Both mutant proteins were catalytically inactive but showed complete cross-reactivity with polyclonal antiserum raised against the wild-type enzyme, as well as CD spectra identical with that of the wild-type enzyme, which were indicative of correct folding. Cys-166 is therefore implicated as the active-site nucleophile. Titration of free thiol groups with 5,5ʹ-dithiobis-(2-nitrobenzoic acid) indicated that Cys-166 is not a rapidly reacting residue. Crystals of both wild-type and C166S amidase grew with identical, rhombohedral morphology; X-ray diffraction analysis established the unit cell dimensions (a = b = c = 84 Å; α = β = γ = 75 °) and space group (R3 or R32). These results imply a quaternary structure of six subunits, with most probably 32 symmetry; the existence of a hexameric structure was supported by molecular mass determinations based on gel filtration and electrophoretic mobility.


1993 ◽  
Vol 291 (3) ◽  
pp. 861-867 ◽  
Author(s):  
H Katagiri ◽  
T Asano ◽  
H Ishihara ◽  
J L Lin ◽  
K Inukai ◽  
...  

GLUT1 glucose-transporter cDNA was modified to substitute leucine for Trp-388 and transfected into Chinese hamster ovary cells using the expression vector termed pMTHneo. This tryptophan residue is conserved among most of the facilitative glucose-transporter isoforms and has been proposed to be the photolabelling site of forskolin, a competitive inhibitor of glucose transport. In addition, this residue is located on membrane-spanning helix 10 which is suggested to contain the dynamic segment of the transporter. The mutated glucose transporter was expressed and inserted into the plasma membrane in a fashion similar to the wild-type. Unexpectedly, this mutation did not abolish photolabelling with forskolin. However, the mutation induced a marked decrease in 2-deoxyglucose uptake with a 4-fold decrease in turnover number and a 1.25-fold increase in Km compared with the wild-type GLUT1. A similar decrease in zero-trans influx activity was also observed for 3-O-methylglucose. In contrast, no apparent decrease was observed in zero trans efflux activity for 3-O-methylglucose. The mutation decreased the turnover number of the glucose transporter in equilibrium exchange influx for 3-O-methylglucose by 33% without any change in Km. These results indicate that (1) Trp-388 is not the photolabelling site for forskolin, if we assume that the labelling occurs at a single site and (2) Trp-388 is more likely to be involved in interconversion between the inward-facing and outward-facing conformers of GLUT1 than binding of glucose, and thus, substitution of leucine for Trp-388 in this dynamic segment would decrease the rate of alternating conformation, which would preferentially affect the influx activity.


2007 ◽  
Vol 73 (19) ◽  
pp. 6254-6261 ◽  
Author(s):  
Shosuke Yoshida ◽  
Haruyuki Atomi ◽  
Tadayuki Imanaka

ABSTRACT The hyperthermophilic archaeon Thermococcus kodakaraensis harbors a type III ribulose 1,5-bisphosphate carboxylase/oxygenase (RbcTk). It has previously been shown that RbcTk is capable of supporting photoautotrophic and photoheterotrophic growth in a mesophilic host cell, Rhodopseudomonas palustris Δ3, whose three native Rubisco genes had been disrupted. Here, we have examined the enzymatic properties of RbcTk at 25°C and have constructed mutant proteins in order to enhance its performance in mesophilic host cells. Initial sites for mutagenesis were selected by focusing on sequence differences in the loop 6 and α-helix 6 regions among RbcTk and the enzymes from spinach (mutant proteins SP1 to SP7), Galdieria partita (GP1 and GP2), and Rhodospirillum rubrum (RR1). Loop 6 of RbcTk is one residue longer than those found in the spinach and G. partita enzymes, and replacing RbcTk loop 6 with these regions led to dramatic decreases in activity. Six mutant enzymes retaining significant levels of Rubisco activity were selected, and their genes were introduced into R. palustris Δ3. Cells harboring mutant protein SP6 displayed a 31% increase in the specific growth rate under photoheterotrophic conditions compared to cells harboring wild-type RbcTk. SP6 corresponds to a complete substitution of the original α-helix 6 of RbcTk with that of the spinach enzyme. Compared to wild-type RbcTk, the purified SP6 mutant protein exhibited a 30% increase in turnover number (k cat) of the carboxylase activity and a 17% increase in the k cat/Km value. Based on these results, seven further mutant proteins were designed and examined. The results confirmed the importance of the length of loop 6 in RbcTk and also led to the identification of specific residue changes that resulted in an increase in the turnover number of RbcTk at ambient temperatures.


2014 ◽  
Vol 70 (10) ◽  
pp. 1434-1442 ◽  
Author(s):  
Patrick J. Loll ◽  
Peining Xu ◽  
John T. Schmidt ◽  
Scott L. Melideo

Ubiquitin has many attributes suitable for a crystallization chaperone, including high stability and ease of expression. However, ubiquitin contains a high surface density of lysine residues and the doctrine of surface-entropy reduction suggests that these lysines will resist participating in packing interactions and thereby impede crystallization. To assess the contributions of these residues to crystallization behavior, each of the seven lysines of ubiquitin was mutated to serine and the corresponding single-site mutant proteins were expressed and purified. The behavior of these seven mutants was then compared with that of the wild-type protein in a 384-condition crystallization screen. The likelihood of obtaining crystals varied by two orders of magnitude within this set of eight proteins. Some mutants crystallized much more readily than the wild type, while others crystallized less readily. X-ray crystal structures were determined for three readily crystallized variants: K11S, K33S and the K11S/K63S double mutant. These structures revealed that the mutant serine residues can directly promote crystallization by participating in favorable packing interactions; the mutations can also exert permissive effects, wherein crystallization appears to be driven by removal of the lysine rather than by addition of a serine. Presumably, such permissive effects reflect the elimination of steric and electrostatic barriers to crystallization.


2002 ◽  
Vol 362 (2) ◽  
pp. 281-287 ◽  
Author(s):  
C. Marc LETT ◽  
J. Guy GUILLEMETTE

The oxidation—reduction potential of eukaryotic cytochromes c varies very little from species to species. We have introduced point mutations into isoform 1 of yeast cytochrome c (iso-1-cytochrome c) to selectively engineer a protein with a higher redox potential. Of the ten different mutant proteins generated for the present investigation Y67R, Y67K and W59H were found to be non-functional. Three other mutant proteins, L32M, L32T and T49K, were functional, but too unstable for biophysical studies. Mutant cytochromes c K79S, K79T, Y48H and Y48K were purified and characterized. The Y48K mutant is the only one that exhibits a significant increase of +117mV in redox potential compared with the wild-type protein while still supporting oxidative phosphorylation invivo. Low temperature difference spectroscopy confirmed the formation of the holoprotein, while adsorption and CD spectroscopy reveal perturbations in the structure of Y48K iso-1-cytochrome c.


Sign in / Sign up

Export Citation Format

Share Document