Manipulation of host signalling pathways by anthrax toxins

2007 ◽  
Vol 402 (3) ◽  
pp. 405-417 ◽  
Author(s):  
Benjamin E. Turk

Infectious microbes face an unwelcoming environment in their mammalian hosts, which have evolved elaborate multicelluar systems for recognition and elimination of invading pathogens. A common strategy used by pathogenic bacteria to establish infection is to secrete protein factors that block intracellular signalling pathways essential for host defence. Some of these proteins also act as toxins, directly causing pathology associated with disease. Bacillus anthracis, the bacterium that causes anthrax, secretes two plasmid-encoded enzymes, LF (lethal factor) and EF (oedema factor), that are delivered into host cells by a third bacterial protein, PA (protective antigen). The two toxins act on a variety of cell types, disabling the immune system and inevitably killing the host. LF is an extraordinarily selective metalloproteinase that site-specifically cleaves MKKs (mitogen-activated protein kinase kinases). Cleavage of MKKs by LF prevents them from activating their downstream MAPK (mitogen-activated protein kinase) substrates by disrupting a critical docking interaction. Blockade of MAPK signalling functionally impairs cells of both the innate and adaptive immune systems and induces cell death in macrophages. EF is an adenylate cyclase that is activated by calmodulin through a non-canonical mechanism. EF causes sustained and potent activation of host cAMP-dependent signalling pathways, which disables phagocytes. Here I review recent progress in elucidating the mechanisms by which LF and EF influence host signalling and thereby contribute to disease.

2004 ◽  
Vol 378 (2) ◽  
pp. 569-577 ◽  
Author(s):  
A. Jane BARDWELL ◽  
Mahsa ABDOLLAHI ◽  
Lee BARDWELL

Anthrax lethal toxin is the major cause of death in systemic anthrax. Lethal toxin consists of two proteins: protective antigen and LF (lethal factor). Protective antigen binds to a cell-surface receptor and transports LF into the cytosol. LF is a metalloprotease that targets MKKs [MAPK (mitogen-activated protein kinase) kinases]/MEKs [MAPK/ERK (extracellular-signal-regulated kinase) kinases], cleaving them to remove a small N-terminal stretch but leaving the bulk of the protein, including the protein kinase domain, intact. LF-mediated cleavage of MEK1 and MKK6 has been shown to inhibit signalling through their cognate MAPK pathways. However, the precise mechanism by which this proteolytic cleavage inhibits signal transmission has been unclear. Here we show that the C-terminal LF-cleavage products of MEK1, MEK2, MKK3, MKK4, MKK6 and MKK7 are impaired in their ability to bind to their MAPK substrates, suggesting a common mechanism for the LF-induced inhibition of signalling.


2018 ◽  
Vol 87 (1) ◽  
Author(s):  
Mingyu Hou ◽  
Wenhui Wang ◽  
Feizi Hu ◽  
Yuanxing Zhang ◽  
Dahai Yang ◽  
...  

ABSTRACT Bacterial phosphothreonine lyases have been identified to be type III secretion system (T3SS) effectors that irreversibly dephosphorylate host mitogen-activated protein kinase (MAPK) signaling to promote infection. However, the effects of phosphothreonine lyase on nuclear factor κB (NF-κB) signaling remain largely unknown. In this study, we detected significant phosphothreonine lyase-dependent p65 degradation during Edwardsiella piscicida infection in macrophages, and this degradative effect was blocked by the protease inhibitor MG132. Further analysis revealed that phosphothreonine lyase promotes the dephosphorylation and ubiquitination of p65 by inhibiting the phosphorylation of mitogen- and stress-activated protein kinase-1 (MSK1) and by inhibiting the phosphorylation of extracellular signal-related kinase 1/2 (ERK1/2), p38α, and c-Jun N-terminal kinase (JNK). Moreover, we revealed that the catalytic active site of phosphothreonine lyase plays a critical role in regulating the MAPK-MSK1-p65 signaling axis. Collectively, the mechanism described here expands our understanding of the pathogenic effector in not only regulating MAPK signaling but also regulating p65. These findings uncover a new mechanism by which pathogenic bacteria overcome host innate immunity to promote pathogenesis.


Reproduction ◽  
2006 ◽  
Vol 131 (4) ◽  
pp. 711-719 ◽  
Author(s):  
Munkhuu Bayarsaikhan ◽  
Akiko Shiratsuchi ◽  
Davaakhuu Gantulga ◽  
Yoshinobu Nakanishi ◽  
Katsuji Yoshioka

Scaffold proteins of mitogen-activated protein kinase (MAPK) intracellular signal transduction pathways mediate the efficient and specific activation of the relevant MAPK signaling modules. Previously, our group and others have identified c-Jun NH2-terminal kinase (JNK)/stress-activated protein kinase-associated protein 1 (JSAP1, also known as JNK-interacting protein 3) as a scaffold protein for JNK MAPK pathways. Although JSAP1 is expressed in the testis in adults, its expression during development has not been investigated. In addition, it is unknown which types of cells in the testis express the scaffold protein. Here, we examined the expression of JSAP1 in the testis of mice aged 14 days, 20 days, 6 weeks, and 12 weeks by immunohistochemistry and Western blotting. The specificity of the anti-JSAP1 antibody was evaluated from its reactivity to exogenously expressed JSAP1 and a structurally related protein, and by antigen-absorption experiments. The immunohistochemical analyses with the specific antibody showed that the JSAP1 protein was selectively expressed in the spermatogonia and spermatocytes, but not in other cell types, including spermatids and somatic cells, during development. However, not all spermatogonia and spermatocytes were immunopositive either, especially in the 12-week-old mouse testis. Furthermore, we found by Western blotting that the expression levels of JSAP1 protein vary during development; there is high expression until 6 weeks after birth, which approximately corresponds to the end of the first wave of spermatogenesis. Collectively, these results suggest that JSAP1 function may be important in spermatogenic cells during early postnatal development.


2009 ◽  
Vol 77 (9) ◽  
pp. 3596-3601 ◽  
Author(s):  
Monica Rolando ◽  
Patrick Munro ◽  
Caroline Stefani ◽  
Patrick Auberger ◽  
Gilles Flatau ◽  
...  

ABSTRACT Systemic injection of Bacillus anthracis lethal toxin (LT) produces vascular leakage and animal death. Recent studies suggest that LT triggers direct endothelial cell cytotoxicity that is responsible for the vascular leakage. LT is composed of heptamers of protective antigen (PA), which drives the endocytosis and translocation into host cells of the lethal factor (LF), a mitogen-activated protein kinase kinase protease. Here we investigated the consequences of injection of an endothelium-permeabilizing factor using LT as a “molecular syringe.” To this end, we generated the chimeric factor LE, corresponding to the PA-binding domain of LF (LF1-254) fused to EDIN exoenzyme. EDIN ADP ribosylates RhoA, leading to actin cable disruption and formation of transcellular tunnels in endothelial cells. We report that systemic injection of LET (LE plus PA) triggers a PA-dependent increase in the pulmonary endothelium permeability. We also report that native LT induces a progressive loss of endothelium barrier function. We established that there is a direct correlation between the extent of endothelium permeability induced by LT and the cytotoxic activity of LT. This suggests new ways to design therapeutic drugs against anthrax directed toward vascular permeability.


2020 ◽  
Author(s):  
Mª José López-Grueso ◽  
Carmen Alicia Padilla ◽  
José Antonio Bárcena ◽  
Raquel Requejo-Aguilar

Abstract DJ-1 is a multifunctional protein involved in Parkinson disease (PD) that can act as antioxidant, molecular chaperone, protease, glyoxalase and transcriptional regulator. However, the exact mechanism by which DJ-1 dysfunction contributes to development of Parkinson´s disease remains elusive. Here, using a comparative proteomic analysis between normal cortical neurons and neurons lacking DJ-1, we show that this protein is involved in cell cycle checkpoints disruption as a consequence of increased amount of p-Tau and a-synuclein proteins, altered signalling pathways, as the phosphoinositide-3-kinase/protein kinase B (PI3K/AKT) and mitogen-activated protein kinase (MAPK), and deregulation of cyclin-dependent kinase 5 (Cdk5). Cdk5 is normally involved in dendritic growth, axon formation and the establishment of synapses, but can also contribute to cell cycle progression, as in our case, in pathological conditions. In addition, we observed a decrease in proteasomal activity, probably due to Tau phosphorylation that can also lead to activation of mitogenic signalling pathways. Taken together, our findings indicate, for the first time, that aborted cell cycle re-entry could be at the onset of DJ-1 associated PD. Thereby, new approaches targeting cell cycle re-entry can be envisaged to improve current therapeutic strategies.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Christian M. Smolko ◽  
Kevin A. Janes

AbstractProtein kinases are enzymes whose abundance, protein-protein interactions, and posttranslational modifications together determine net signaling activity in cells. Large-scale data on cellular kinase activity are limited, because existing assays are cumbersome, poorly sensitive, low throughput, and restricted to measuring one kinase at a time. Here, we surmount the conventional hurdles of activity measurement with a multiplexing approach that leverages the selectivity of individual kinase-substrate pairs. We demonstrate proof of concept by designing an assay that jointly measures activity of five pleiotropic signaling kinases: Akt, IκB kinase (IKK), c-jun N-terminal kinase (JNK), mitogen-activated protein kinase (MAPK)-extracellular regulated kinase kinase (MEK), and MAPK-activated protein kinase-2 (MK2). The assay operates in a 96-well format and specifically measures endogenous kinase activation with coefficients of variation less than 20%. Multiplex tracking of kinase-substrate pairs reduces input requirements by 25-fold, with ~75 µg of cellular extract sufficient for fiveplex activity profiling. We applied the assay to monitor kinase signaling during coxsackievirus B3 infection of two different host-cell types and identified multiple differences in pathway dynamics and coordination that warrant future study. Because the Akt–IKK–JNK–MEK–MK2 pathways regulate many important cellular functions, the fiveplex assay should find applications in inflammation, environmental-stress, and cancer research.


Sign in / Sign up

Export Citation Format

Share Document