scholarly journals Anti-cooperative assembly of the SRP19 and SRP68/72 components of the signal recognition particle

2008 ◽  
Vol 415 (3) ◽  
pp. 429-437 ◽  
Author(s):  
Tuhin Subhra Maity ◽  
Howard M. Fried ◽  
Kevin M. Weeks

The mammalian SRP (signal recognition particle) represents an important model for the assembly and role of inter-domain interactions in complex RNPs (ribonucleoproteins). In the present study we analysed the interdependent interactions between the SRP19, SRP68 and SRP72 proteins and the SRP RNA. SRP72 binds the SRP RNA largely via non-specific electrostatic interactions and enhances the affinity of SRP68 for the RNA. SRP19 and SRP68 both bind directly and specifically to the same two RNA helices, but on opposite faces and at opposite ends. SRP19 binds at the apices of helices 6 and 8, whereas the SRP68/72 heterodimer binds at the three-way junction involving RNA helices 5, 6 and 8. Even though both SRP19 and SRP68/72 stabilize a similar parallel orientation for RNA helices 6 and 8, these two proteins bind to the RNA with moderate anti-cooperativity. Long-range anti-cooperative binding by SRP19 and SRP68/72 appears to arise from stabilization of distinct conformations in the stiff intervening RNA scaffold. Assembly of large RNPs is generally thought to involve either co-operative or energetically neutral interactions among components. By contrast, our findings emphasize that antagonistic interactions can play significant roles in assembly of multi-subunit RNPs.

Archaea ◽  
2010 ◽  
Vol 2010 ◽  
pp. 1-11 ◽  
Author(s):  
Christian Zwieb ◽  
Shakhawat Bhuiyan

Archaea SRP is composed of an SRP RNA molecule and two bound proteins named SRP19 and SRP54. Regulated by the binding and hydrolysis of guanosine triphosphates, the RNA-bound SRP54 protein transiently associates not only with the hydrophobic signal sequence as it emerges from the ribosomal exit tunnel, but also interacts with the membrane-associated SRP receptor (FtsY). Comparative analyses of the archaea genomes and their SRP component sequences, combined with structural and biochemical data, support a prominent role of the SRP RNA in the assembly and function of the archaea SRP. The 5e motif, which in eukaryotes binds a 72 kilodalton protein, is preserved in most archaea SRP RNAs despite the lack of an archaea SRP72 homolog. The primary function of the 5e region may be to serve as a hinge, strategically positioned between the small and large SRP domain, allowing the elongated SRP to bind simultaneously to distant ribosomal sites. SRP19, required in eukaryotes for initiating SRP assembly, appears to play a subordinate role in the archaea SRP or may be defunct. The N-terminal A region and a novel C-terminal R region of the archaea SRP receptor (FtsY) are strikingly diverse or absent even among the members of a taxonomic subgroup.


2003 ◽  
Vol 374 (1) ◽  
pp. 247-254 ◽  
Author(s):  
Ralf G. MOLL

The signal-recognition particle (SRP) of one of the most acidophilic and hyperthermophilic archaeal cells, Acidianus ambivalens, and its putative receptor component, FtsY (prokaryotic SRP receptor), were investigated in detail. A. ambivalens Ffh (fifty-four-homologous protein) was shown to be a soluble protein with strong affinity to membranes. In its membrane-residing form, Ffh was extracted from plasma membranes with chaotropic agents like urea, but not with agents diminishing electrostatic interactions. Using unilamellar tetraether phospholipid vesicles, both Ffh and FtsY associate independently from each other in the absence of other factors, suggesting an equilibrium of soluble and membrane-bound protein forms under in vivo conditions. The Ffh protein precipitated from cytosolic cell supernatants with anti-Ffh antibodies, together with an 7 S-alike SRP–RNA, suggesting a stable core ribonucleoprotein composed of both components under native conditions. The SRP RNA of A. ambivalens depicted a size of about 309 nucleotides like the SRP RNA of the related organism Sulfolobus acidocaldarius. A stable heterodimeric complex composed of Ffh and FtsY was absent in cytosolic super-natants, indicating a transiently formed complex during archaeal SRP targeting. The FtsY protein precipitated in cytosolic super-natants with anti-FtsY antisera as a homomeric protein lacking accessory protein components. However, under in vitro conditions, recombinantly generated Ffh and FtsY associate in a nucleotide-independent manner, supporting a structural receptor model with two interacting apoproteins.


Science ◽  
2014 ◽  
Vol 344 (6179) ◽  
pp. 101-104 ◽  
Author(s):  
Jan Timo Grotwinkel ◽  
Klemens Wild ◽  
Bernd Segnitz ◽  
Irmgard Sinning

The signal recognition particle (SRP) is central to membrane protein targeting; SRP RNA is essential for SRP assembly, elongation arrest, and activation of SRP guanosine triphosphatases. In eukaryotes, SRP function relies on the SRP68-SRP72 heterodimer. We present the crystal structures of the RNA-binding domain of SRP68 (SRP68-RBD) alone and in complex with SRP RNA and SRP19. SRP68-RBD is a tetratricopeptide-like module that binds to a RNA three-way junction, bends the RNA, and inserts an α-helical arginine-rich motif (ARM) into the major groove. The ARM opens the conserved 5f RNA loop, which in ribosome-bound SRP establishes a contact to ribosomal RNA. Our data provide the structural basis for eukaryote-specific, SRP68-driven RNA remodeling required for protein translocation.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
André Plagens ◽  
Michael Daume ◽  
Julia Wiegel ◽  
Lennart Randau

Signal recognition particles (SRPs) are universal ribonucleoprotein complexes found in all three domains of life that direct the cellular traffic and secretion of proteins. These complexes consist of SRP proteins and a single, highly structured SRP RNA. Canonical SRP RNA genes have not been identified for some Thermoproteus species even though they contain SRP19 and SRP54 proteins. Here, we show that genome rearrangement events in Thermoproteus tenax created a permuted SRP RNA gene. The 5'- and 3'-termini of this SRP RNA are located close to a functionally important loop present in all known SRP RNAs. RNA-Seq analyses revealed that these termini are ligated together to generate circular SRP RNA molecules that can bind to SRP19 and SRP54. The circularization site is processed by the tRNA splicing endonuclease. This moonlighting activity of the tRNA splicing machinery permits the permutation of the SRP RNA and creates highly stable and functional circular RNA molecules.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1161-C1161
Author(s):  
Irmgard Sinning

More than 25% of the cellular proteome comprise membrane proteins that have to be inserted into the correct target membrane. Most membrane proteins are delivered to the membrane by the signal recognition particle (SRP) pathway which relies on the recognition of an N-terminal signal sequence. In contrast to this co-translational mechanism, which avoids problems due to the hydrophobic nature of the cargo proteins, tail-anchored (TA) membrane proteins utilize a post-translational mechanism for membrane insertion – the GET pathway (guided entry of tail-anchored membrane proteins). The SRP and GET pathways are both regulated by GTP and ATP binding proteins of the SIMIBI family. However, in the SRP pathway the SRP RNA plays a unique regulatory role. Recent insights into eukaryotic SRP will be discussed.


Biochemistry ◽  
1995 ◽  
Vol 34 (37) ◽  
pp. 11989-11997 ◽  
Author(s):  
Kerfoot P. Walker ◽  
Shaun D. Black ◽  
Christian Zwieb

2006 ◽  
Vol 189 (1) ◽  
pp. 276-279 ◽  
Author(s):  
Sophie Yurist ◽  
Idit Dahan ◽  
Jerry Eichler

ABSTRACT In vitro, archaeal SRP54 binds SRP RNA in the absence of SRP19, suggesting the latter to be expendable in Archaea. Accordingly, the Haloferax volcanii SRP19 gene was deleted. Although normally transcribed at a level comparable to that of the essential SRP54 gene, SRP19 deletion had no effect on cell growth, membrane protein insertion, protein secretion, or ribosome levels. The absence of SRP19 did, however, increase membrane bacterioruberin levels.


2015 ◽  
Vol 211 (1) ◽  
pp. 91-104 ◽  
Author(s):  
Patrick Kuhn ◽  
Albena Draycheva ◽  
Andreas Vogt ◽  
Narcis-Adrian Petriman ◽  
Lukas Sturm ◽  
...  

Cotranslational protein targeting delivers proteins to the bacterial cytoplasmic membrane or to the eukaryotic endoplasmic reticulum membrane. The signal recognition particle (SRP) binds to signal sequences emerging from the ribosomal tunnel and targets the ribosome-nascent-chain complex (RNC) to the SRP receptor, termed FtsY in bacteria. FtsY interacts with the fifth cytosolic loop of SecY in the SecYEG translocon, but the functional role of the interaction is unclear. By using photo-cross-linking and fluorescence resonance energy transfer measurements, we show that FtsY–SecY complex formation is guanosine triphosphate independent but requires a phospholipid environment. Binding of an SRP–RNC complex exposing a hydrophobic transmembrane segment induces a rearrangement of the SecY–FtsY complex, which allows the subsequent contact between SecY and ribosomal protein uL23. These results suggest that direct RNC transfer to the translocon is guided by the interaction between SRP and translocon-bound FtsY in a quaternary targeting complex.


Sign in / Sign up

Export Citation Format

Share Document