A novel role of the C-terminus of b0,+AT in the ER–Golgi trafficking of the rBAT–b0,+AT heterodimeric amino acid transporter

2008 ◽  
Vol 417 (2) ◽  
pp. 441-448 ◽  
Author(s):  
Shinichi Sakamoto ◽  
Arthit Chairoungdua ◽  
Shushi Nagamori ◽  
Pattama Wiriyasermkul ◽  
Kanyarat Promchan ◽  
...  

The heterodimeric complex composed of rBAT (related to b0,+ amino acid transporter), a single-membrane-spanning glycosylated heavy chain, and b0,+AT, a putative 12-membrane-spanning non-glycosylated light chain, is an amino acid transporter that mediates the activity of system b0,+, a major apical transport system for cystine and dibasic amino acids in renal proximal tubule and small intestine. The C-terminus of b0,+AT has been proposed to play an important role in the functional expression of the heterodimeric transporters. In the present study, to reveal the roles of the C-terminus, we analysed b0,+AT mutants whose C-termini were sequentially deleted or replaced by site-directed mutagenesis in polarized MDCKII (Madin–Darby canine kidney II), non-polarized HEK-293 (human embryonic kidney-293) and HeLa cells. Although the deletion of C-terminus of b0,+AT did not affect the formation of a heterodimer with rBAT, it resulted in the loss of apparent transport function, owing to the failure of the plasma-membrane targeting of rBAT–b0,+AT heterodimeric complex associated with incomplete glycosylation of rBAT. A motif-like sequence Val480-Pro481-Pro482 was identified in the C-terminus of b0,+AT to be responsible for the C-terminus action in promoting the trafficking of rBAT–b0,+AT heterodimeric complex from the ER (endoplasmic reticulum) to Golgi apparatus. This is, to our knowledge, the first demonstration of the active contribution of the C-terminus of a light-chain subunit to the intracellular trafficking of heterodimeric transporters. Because the motif-like sequence Val480-Pro481-Pro482 is well conserved among the C-termini of light-chain subunits, common regulatory mechanisms could be proposed among heterodimeric amino acid transporters.

2021 ◽  
Vol 4 (3) ◽  
pp. 51
Author(s):  
Satish Kantipudi ◽  
Daniel Harder ◽  
Sara Bonetti ◽  
Dimitrios Fotiadis ◽  
Jean-Marc Jeckelmann

Heterodimeric amino acid transporters (HATs) are protein complexes composed of two subunits, a heavy and a light subunit belonging to the solute carrier (SLC) families SLC3 and SLC7. HATs transport amino acids and derivatives thereof across the plasma membrane. The human HAT 4F2hc-LAT1 is composed of the type-II membrane N-glycoprotein 4F2hc (SLC3A2) and the L-type amino acid transporter LAT1 (SLC7A5). 4F2hc-LAT1 is medically relevant, and its dysfunction and overexpression are associated with autism and tumor progression. Here, we provide a general applicable protocol on how to screen for the best membrane transport protein-expressing clone in terms of protein amount and function using Pichia pastoris as expression host. Furthermore, we describe an overexpression and purification procedure for the production of the HAT 4F2hc-LAT1. The isolated heterodimeric complex is pure, correctly assembled, stable, binds the substrate L-leucine, and is thus properly folded. Therefore, this Pichia pastoris-derived recombinant human 4F2hc-LAT1 sample can be used for downstream biochemical and biophysical characterizations.


2001 ◽  
Vol 281 (4) ◽  
pp. C1077-C1093 ◽  
Author(s):  
Carsten A. Wagner ◽  
Florian Lang ◽  
Stefan Bröer

Heterodimeric amino acid transporters are comprised of two subunits, a polytopic membrane protein (light chain) and an associated type II membrane protein (heavy chain). The heavy chain rbAT (related to b0,+ amino acid transporter) associates with the light chain b0,+AT (b0,+ amino acid transporter) to form the amino acid transport system b0,+, whereas the homologous heavy chain 4F2hc interacts with several light chains to form system L (with LAT1 and LAT2), system y+L (with y+LAT1 and y+LAT2), system x[Formula: see text](with xAT), or system asc (with asc1). The association of light chains with the two heavy chains is not unambiguous. rbAT may interact with LAT2 and y+LAT1 and vice versa; 4F2hc may interact with b0,+AT when overexpressed. 4F2hc is necessary for trafficking of the light chain to the plasma membrane, whereas the light chains are thought to determine the transport characteristics of the respective heterodimer. In contrast to 4F2hc, mutations in rbAT suggest that rbAT itself takes part in the transport besides serving for the trafficking of the light chain to the cell surface. Heavy and light subunits are linked together by a disulfide bridge. The disulfide bridge, however, is not necessary for the trafficking of rbAT or 4F2 heterodimers to the membrane or for the functioning of the transporter. However, there is experimental evidence that the disulfide bridge in the 4F2hc/LAT1 heterodimer plays a role in the regulation of a cation channel. These results highlight complex interactions between the different subunits of heterodimeric amino acid transporters and suggest that despite high grades of homology, the interactions between rbAT and 4F2hc and their respective partners may be different.


2008 ◽  
Vol 417 (2) ◽  
pp. e9-e11 ◽  
Author(s):  
Vadivel Ganapathy

Heterodimeric amino acid transporters represent a unique class of transport systems that consist of a light chain that serves as the ‘transporter proper’ and a heavy chain that is necessary for targeting the complex to the plasma membrane. The currently prevailing paradigm assigns no role for the light chains in the cellular processing of these transporters. In this issue of the Biochemical Journal, Sakamoto et al. provide evidence contrary to this paradigm. Their studies with the rBAT –b0,+AT (related to b0,+ amino acid transporter–b0,+-type amino acid transporter) heterodimeric amino acid transporter show that the C-terminus of the light chain b0,+AT contains a sequence motif that serves as the traffic signal for the transfer of the heterodimeric complex from the endoplasmic reticulum to the Golgi. This is a novel function for the light chain in addition to its already established role as the subunit responsible for the transport activity. These new findings also seem to be applicable to other heterodimeric amino acid transporters as well.


2020 ◽  
Vol 21 (5) ◽  
pp. 1849
Author(s):  
Jie Xu ◽  
Jiao Wang ◽  
Yang Cao ◽  
Xiaotong Jia ◽  
Yujia Huang ◽  
...  

Alterations in placental transport may contribute to abnormal fetal intrauterine growth in pregnancies complicated by diabetes, but it is not clear whether the placental amino acid transport system is altered in diabetic pregnancies. We therefore studied the changes in the expressions of placental amino acid transporters in a rat model of diabetes induced by streptozotocin, and tested the effects of hyperglycemia on trophoblast amino acid transporter in vitro. Our results showed that the expressions for key isoforms of system L amino acid transporters were significantly reduced in the placentas of streptozotocin-induced diabetic pregnant rats, which was associated with the decreased birthweight in the rats. A decreased placental efficiency and decreased placental mammalian target of rapamycin (mTOR) complex 1 (mTORC1) activity were also found in the rat model. In addition, hyperglycemia in vitro could inhibit amino acid transporter expression and mTORC1 activity in human trophoblast. Inhibition of mTORC1 activity led to reduced amino acid transporter expression in placental trophoblast. We concluded that reduced placental mTORC1 activity during pregnancy resulted in decreased placental amino acid transporter expression and, subsequently, contributed to fetal intrauterine growth restriction in pregnancies complicated with diabetes.


2019 ◽  
Vol 21 (1) ◽  
pp. 119 ◽  
Author(s):  
Raquel Yahyaoui ◽  
Javier Pérez-Frías

Amino acid transporters play very important roles in nutrient uptake, neurotransmitter recycling, protein synthesis, gene expression, cell redox balance, cell signaling, and regulation of cell volume. With regard to transporters that are closely connected to metabolism, amino acid transporter-associated diseases are linked to metabolic disorders, particularly when they involve different organs, cell types, or cell compartments. To date, 65 different human solute carrier (SLC) families and more than 400 transporter genes have been identified, including 11 that are known to include amino acid transporters. This review intends to summarize and update all the conditions in which a strong association has been found between an amino acid transporter and an inherited metabolic disorder. Many of these inherited disorders have been identified in recent years. In this work, the physiological functions of amino acid transporters will be described by the inherited diseases that arise from transporter impairment. The pathogenesis, clinical phenotype, laboratory findings, diagnosis, genetics, and treatment of these disorders are also briefly described. Appropriate clinical and diagnostic characterization of the underlying molecular defect may give patients the opportunity to avail themselves of appropriate therapeutic options in the future.


2012 ◽  
Vol 446 (1) ◽  
pp. 135-148 ◽  
Author(s):  
Stephen J. Fairweather ◽  
Angelika Bröer ◽  
Megan L. O'Mara ◽  
Stefan Bröer

The brush-border membrane of the small intestine and kidney proximal tubule are the major sites for the absorption and re-absorption of nutrients in the body respectively. Transport of amino acids is mediated through the action of numerous secondary active transporters. In the mouse, neutral amino acids are transported by B0AT1 [broad neutral (0) amino acid transporter 1; SLC6A19 (solute carrier family 6 member 19)] in the intestine and by B0AT1 and B0AT3 (SLC6A18) in the kidney. Immunoprecipitation and Blue native electrophoresis of intestinal brush-border membrane proteins revealed that B0AT1 forms complexes with two peptidases, APN (aminopeptidase N/CD13) and ACE2 (angiotensin-converting enzyme 2). Physiological characterization of B0AT1 expressed together with these peptidases in Xenopus laevis oocytes revealed that APN increased the substrate affinity of the transporter up to 2.5-fold and also increased its surface expression (Vmax). Peptide competition experiments, in silico modelling and site-directed mutagenesis of APN suggest that the catalytic site of the peptidase is involved in the observed changes of B0AT1 apparent substrate affinity, possibly by increasing the local substrate concentration. These results provide evidence for the existence of B0AT1-containing digestive complexes in the brush-border membrane, interacting differentially with various peptidases, and responding to the dynamic needs of nutrient absorption in the intestine and kidney.


2008 ◽  
Vol 20 (1) ◽  
pp. 175
Author(s):  
S. L. Whitear ◽  
H. J. Leese

Oviduct fluid provides the environment for the gametes and early embryo but little is known about the mechanisms underlying its formation. Components of oviduct fluid have been shown to be present at concentrations different from that in blood, indicative of selective transport by the epithelial cells lining the lumen. For example, amino acid concentrations in oviduct fluid differ from those in extracellular fluid and have also been shown to be important to preimplantation embryos in vitro, enhancing development, especially when added at physiological concentrations. However, little is known about amino acid transport systems in the oviduct, and the aim of this work was to search for mRNA transcripts for amino acid transporters in bovine oviduct epithelial cells. Contra- and ipsi-lateral oviducts were removed from abattoir-derived reproductive tracts at specific stages of the reproductive cycle. Oviducts were trimmed of surrounding tissue and fat and slit longitudinally to expose the luminal surface. Bovine oviduct epithelial cells (bOEC) were scraped from the surface using a sterile glass coverslip and washed by centrifugation. mRNA was isolated using Trizol-chloroform extraction and lithium chloride precipitation methods. PCR was used to detect cDNA encoding the amino acid transporters CAT-1, CAT-4, and LAT1. A negative control (water) and a positive control (human placental cDNA) were included in each experiment and β-actin expression was used as a positive control for cDNA library generation. Products were separated by agarose gel electrophoresis. PCR for β-actin resulted in the presence of a positive band in all samples, showing successful extraction of mRNA and generation of cDNA libraries. mRNA for CAT-1 and LAT1 was detected in bOEC from contra- and ipsi-lateral oviducts and from each cycle stage tested. There was, however, no detectable mRNA for CAT-4 in any of the samples. To our knowledge, this is the first report of amino acid transporter expression in the mammalian oviduct. CAT-1 is a ubiquitous sodium-independent uniporter of cationic amino acids that has been localized to the basolateral membrane of epithelial cells. The presence of mRNA for this amino acid transporter in all samples tested is therefore to be expected. LAT1 is a obligatory exchanger which exports glutamine and cystine and imports large uncharged branched-chain amino acids. This transporter may be partly responsible for the high concentration of glutamate in the basal compartment of in vitro cell cultures reported in our previous work (Whitear and Leese 2007 Biennial Meet. Joint Fertil. Soc., York, UK). CAT-4 shares only 40% sequence homology with CAT-1 and its function is unknown. Its expression appears to be restricted to brain, testis, and placenta, and the absence of mRNA for the oviduct was, perhaps, not surprising. Further experiments will investigate expression levels of other amino acid transporters in bOEC and transporter localization using immunohistochemistry. This work was funded by the BBSRC and ANGLE Technology Ltd.


2011 ◽  
Vol 111 (1) ◽  
pp. 135-142 ◽  
Author(s):  
Micah J. Drummond ◽  
Christopher S. Fry ◽  
Erin L. Glynn ◽  
Kyle L. Timmerman ◽  
Jared M. Dickinson ◽  
...  

Amino acid transporters and mammalian target of rapamycin complex 1 (mTORC1) signaling are important contributors to muscle protein anabolism. Aging is associated with reduced mTORC1 signaling following resistance exercise, but the role of amino acid transporters is unknown. Young ( n = 13; 28 ± 2 yr) and older ( n = 13; 68 ± 2 yr) subjects performed a bout of resistance exercise. Skeletal muscle biopsies ( vastus lateralis) were obtained at basal and 3, 6, and 24 h postexercise and were analyzed for amino acid transporter mRNA and protein expression and regulators of amino acid transporter transcription utilizing real-time PCR and Western blotting. We found that basal amino acid transporter expression was similar in young and older adults ( P > 0.05). Exercise increased L-type amino acid transporter 1/solute-linked carrier (SLC) 7A5, CD98/SLC3A2, sodium-coupled neutral amino acid transporter 2/SLC38A2, proton-assisted amino acid transporter 1/SLC36A1, and cationic amino acid transporter 1/SLC7A1 mRNA expression in both young and older adults ( P < 0.05). L-type amino acid transporter 1 and CD98 protein increased only in younger adults ( P < 0.05). eukaryotic initiation factor 2 α-subunit (S52) increased similarly in young and older adults postexercise ( P < 0.05). Ribosomal protein S6 (S240/244) and activating transcription factor 4 nuclear protein expression tended to be higher in the young, while nuclear signal transducer and activator of transcription 3 (STAT3) (Y705) was higher in the older subjects postexercise ( P < 0.05). These results suggest that the rapid upregulation of amino acid transporter expression following resistance exercise may be regulated differently between the age groups, but involves a combination of mTORC1, activating transcription factor 4, eukaryotic initiation factor 2 α-subunit, and STAT3. We propose an increase in amino acid transporter expression may contribute to enhanced amino acid sensitivity following exercise in young and older adults. In older adults, the increased nuclear STAT3 phosphorylation may be indicative of an exercise-induced stress response, perhaps to export amino acids from muscle cells.


1997 ◽  
Vol 328 (2) ◽  
pp. 657-664 ◽  
Author(s):  
Hiroko SEGAWA ◽  
Ken-ichi MIYAMOTO ◽  
Yoshio OGURA ◽  
Hiromi HAGA ◽  
Kyoko MORITA ◽  
...  

The Na+-independent dibasic and neutral amino acid transporter NBAT is among the least hydrophobic of mammalian amino acid transporters. The transporter contains one to four transmembrane domains and induces amino acid transport activity via a b0,+-like system when expressed in Xenopus oocytes. However, the physiological role of NBAT remains unclear. Complementary DNA clones encoding mouse NBAT have now been isolated. The expression of mouse NBAT in Xenopus oocytes also induced an obligatory amino acid exchange activity similar to that of the b0,+-like system. The amount of NBAT mRNA in mouse kidney increased during postnatal development, consistent with the increase in renal cystine and dibasic transport activity. Dietary aspartate induced a marked increase in cystine transport via the b0,+ system in mouse ileum. A high-aspartate diet also increased the amount of NBAT mRNA in mouse ileum. In the ileum of mice fed on the aspartate diet, the extent of cystine transport was further increased by preloading brush border membrane vesicles with lysine. Hybrid depletion of NBAT mRNA from ileal polyadenylated RNA revealed that the increase in cystine transport activity induced by the high-aspartate diet, as measured in Xenopus oocytes, was attributable to NBAT. These results demonstrate that mouse NBAT has an important role in cystine transport.


Sign in / Sign up

Export Citation Format

Share Document