scholarly journals Lipid peroxidation and haemoglobin degradation in red blood cells exposed to t-butyl hydroperoxide. Effects of the hexose monophosphate shunt as mediated by glutathione and ascorbate

1982 ◽  
Vol 204 (2) ◽  
pp. 405-415 ◽  
Author(s):  
R J Trotta ◽  
S G Sullivan ◽  
A Stern

Lipid peroxidation and haemoglobin degradation were the two extremes of a spectrum of oxidative damage in red cells exposed to t-butyl hydroperoxide. The exact position in this spectrum depended on the availability of glucose and the ligand state of haemoglobin. In red cells containing oxy- or carbonmono-oxy-haemoglobin, hexose monophosphate-shunt activity was mainly responsible for metabolism of t-butyl hydroperoxide; haem groups were the main scavengers in red cells containing methaemoglobin. Glutathione, via glutathione peroxidase, accounted for nearly all of the hydroperoxide metabolizing activity of the hexose monophosphate shunt. Glucose protection against lipid peroxidation was almost entirely mediated by glutathione, whereas glucose protection of haemoglobin was only partly mediated by glutathione. Physiological concentrations of intracellular or extracellular ascorbate had no effect on consumption of t-butyl hydroperoxide or oxidation of haemoglobin. Ascorbate was mainly involved in scavenging chain-propagating species involved in lipid peroxidation. The protective effect of intracellular ascorbate against lipid peroxidation was about 100% glucose-dependent and about 50% glutathione-dependent. Extracellular ascorbate functioned largely without a requirement for glucose metabolism, although some synergistic effects between extracellular ascorbate and glutathione were observed. Lipid peroxidation was not dependent on the rate or completion of t-butyl hydroperoxide consumption but rather on the route of consumption. Lipid peroxidation appears to depend on the balance between the presence of initiators of lipid peroxidation (oxyhaemoglobin and low concentrations of methaemoglobin) and terminators of lipid peroxidation (glutathione, ascorbate, high concentrations of methaemoglobin).

1983 ◽  
Vol 212 (3) ◽  
pp. 759-772 ◽  
Author(s):  
Robert J. Trotta ◽  
Stephen Gene Sullivan ◽  
Arnold Stern

Red cells exposed to t-butyl hydroperoxide undergo lipid peroxidation, haemoglobin degradation and hexose monophosphate-shunt stimulation. By using the lipid-soluble antioxidant 2,6-di-t-butyl-p-cresol, the relative contributions of t-butyl hydroperoxide and membrane lipid hydroperoxides to oxidative haemoglobin changes and hexose monophosphate-shunt stimulation were determined. About 90% of the haemoglobin changes and all of the hexose monophosphate-shunt stimulation were caused by t-butyl hydroperoxide. The remainder of the haemoglobin changes appeared to be due to reactions between haemoglobin and lipid hydroperoxides generated during membrane peroxidation. After exposure of red cells to t-butyl hydroperoxide, no lipid hydroperoxides were detected iodimetrically, whether or not glucose was present in the incubation. Concentrations of 2,6-di-t-butyl-p-cresol, which almost totally suppressed lipid peroxidation, significantly inhibited haemoglobin binding to the membrane but had no significant effect on hexose monophosphate shunt stimulation, suggesting that lipid hydroperoxides had been decomposed by a reaction with haem or haem-protein and not enzymically via glutathione peroxidase. The mechanisms of lipid peroxidation and haemoglobin oxidation and the protective role of glucose were also investigated. In time-course studies of red cells containing oxyhaemoglobin, methaemoglobin or carbonmono-oxyhaemoglobin incubated without glucose and exposed to t-butyl hydroperoxide, haemoglobin oxidation paralleled both lipid peroxidation and t-butyl hydroperoxide consumption. Lipid peroxidation ceased when all t-butyl hydroperoxide was consumed, indicating that it was not autocatalytic and was driven by initiation events followed by rapid propagation and termination of chain reactions and rapid non-enzymic decomposition of lipid hydroperoxides. Carbonmono-oxyhaemoglobin and oxyhaemoglobin were good promoters of peroxidation, whereas methaemoglobin relatively spared the membrane from peroxidation. The protective influence of glucose metabolism on the time course of t-butyl hydroperoxide-induced changes was greatest in carbonmono-oxyhaemoglobin-containing red cells followed in order by oxyhaemoglobin- and methaemoglobin-containing red cells. This is the reverse order of the reactivity of the hydroperoxide with haemoglobin, which is greatest with methaemoglobin. In studies exposing red cells to a wide range of t-butyl hydroperoxide concentrations, haemoglobin oxidation and lipid peroxidation did not occur until the cellular glutathione had been oxidized. The amount of lipid peroxidation per increment in added t-butyl hydroperoxide was greatest in red cells containing carbonmono-oxyhaemoglobin, followed in order by oxyhaemoglobin and methaemoglobin. Red cells containing oxyhaemoglobin and carbonmono-oxyhaemoglobin and exposed to increasing concentrations of t-butyl hydroperoxide became increasingly resistant to lipid peroxidation as methaemoglobin accumulated, supporting a relatively protective role for methaemoglobin. In the presence of glucose, higher levels of t-butyl hydroperoxide were required to induce lipid peroxidation and haemoglobin oxidation compared with incubations without glucose. Carbonmono-oxyhaemoglobin-containing red cells exposed to the highest levels of t-butyl hydroperoxide underwent haemolysis after a critical level of lipid peroxidation was reached. Inhibition of lipid peroxidation by 2,6-di-t-butyl-p-cresol below this critical level prevented haemolysis. Oxidative membrane damage appeared to be a more important determinant of haemolysis in vitro than haemoglobin degradation. The effects of various antioxidants and free-radical scavengers on lipid peroxidation in red cells or in ghosts plus methaemoglobin exposed to t-butyl hydroperoxide suggested that red-cell haemoglobin decomposed the hydroperoxide by a homolytic scission mechanism to t-butoxyl radicals.


1980 ◽  
Vol 58 (3) ◽  
pp. 271-274 ◽  
Author(s):  
Lionel S. Sewchand ◽  
Dieter Bruckschwaiger

The effectiveness of dextran fractions (Dx-500, Dx-100, Dx-70) and polyvinylpyrrolidone (PVP-360, PVP-40) in inducing aggregation of red blood cells (RBC) was studied in a nonflowing environment. The Dx fractions, at low concentrations, induced aggregation of human RBC but failed to do so at high concentrations (concentrations greater than 70 g/L). The effect was different on RBC from animal species (cat and rabbit); aggregation increased steadily with the Dx concentration and there was no critical concentration beyond which Dx failed to induce aggregation. The PVP was found to be very effective, at all concentrations, in inducing aggregation of RBC from both human and the animal species. These results have a twofold significance: (1) they suggest that Dx and PVP, both neutral polymers, interact differently with the human RBC membrane; and (2) the association of Dx with the human RBC membrane is different from that with cat and rabbit RBC membranes.


1995 ◽  
Vol 306 (3) ◽  
pp. 793-799 ◽  
Author(s):  
H Fyrst ◽  
J Knudsen ◽  
M A Schott ◽  
B H Lubin ◽  
F A Kuypers

Acyl-CoA-binding protein (ACBP) has been identified in a number of tissues and shown to affect the intracellular distribution and utilization of acyl-CoA. We have detected ACBP in the cytosol but not the membrane of human red blood cells and, using an e.l.i.s.a. with antibodies prepared against human liver ACBP, found that its concentration was 0.5 microM. To investigate the role of ACBP in human red blood cells, we added purified human liver ACBP and radiolabelled acyl-CoA to isolated membranes from these cells. ACBP prevented high concentrations of acyl-CoA from binding to the membrane but could not keep the acyl-CoA in the aqueous phase at low concentrations. This suggested the presence of a pool in the membrane with a binding affinity for acyl-CoA that was greater than that of ACBP for acyl-CoA. In the presence of lysophospholipid, this membrane-bound pool of acyl-CoA was rapidly used as a substrate by acyl-CoA:lysophospholipid acyltransferase (LAT) to generate phospholipid from lysophospholipid. We also found that ACBP-bound acyl-CoA was preferred over free acyl-CoA as a substrate by LAT. These results are the first documentation that human red blood cells contain ACBP and that this protein can affect the utilization of acyl-CoA in plasma membranes of these cells. The interactions between acyl-CoA, ACBP and the membrane suggest that there are several pools of acyl-CoA in the human red blood cell and that ACBP may have a role in regulating their distribution and fate.


Blood ◽  
1975 ◽  
Vol 45 (1) ◽  
pp. 49-54 ◽  
Author(s):  
AL Jr Sagone ◽  
SP Balcerzak ◽  
EN Metz

Abstract In this investigation, we studied the importance of cellular glutathione (GSH) in the hexose monophosphate shunt (HMPS) activity of unstimulated human erythrocytes and the mechanism by which pyruvate stimulates the HMPS. The rate of HMPS activity was measured by the production of radioactive CO2 from 14C-1-glucose or 14C-1-ribose using a vibrating reed electrometer and ionization chamber. HMPS activity was not significantly impaired by N-ethylmaleimide (NEM) in concentrations which bound all red cell GSH. Red cells incubated under carbon monoxide (CO), an experimental condition which eliminates peroxide production, still had HMPS activity which was 44% of the value under air. Pyruvate stimulation of the HMPS was unaffected by doses of NEM which bound all cellular GSH or by incubation under CO. These data indicated that pyruvate stimulation of the HMPS occurs by pathways which do not involve peroxide formation, GSH, or oxygen. This study indicates that sulfhydrylblockade of GSH does not necessarily inhibit HMPS activity and that HMPS activity in red cells may respond to reactions not linked directly to glutathione reduction.


1971 ◽  
Vol 179 (1 Drug Metaboli) ◽  
pp. 625-635 ◽  
Author(s):  
Selman I. Welt ◽  
Elizabeth H. Jackson ◽  
Henry N. Kirkman ◽  
John C. Parker

1974 ◽  
Vol 63 (4) ◽  
pp. 389-414 ◽  
Author(s):  
John R. Sachs ◽  
J. Clive Ellory ◽  
Donna L. Kropp ◽  
Philip B. Dunham ◽  
Joseph F. Hoffman

The kinetic characteristics of the Na:K pump in high potassium (HK) and low potassium (LK) goat red cells were investigated after altering the intracellular cation concentrations. At low concentrations of intracellular K (Kc), increasing Kc at first stimulates the active K influx in HK cells, but at higher Kc the pump is inhibited. These results suggest that in HK cells Kc acts both at a stimulatory site at the inner aspect of the pump and by competition with intracellular Na (Nac) at the Na translocation sites. In LK cells, Kc inhibits the active K influx and the sensitivity of LK cells to inhibition is much greater than the sensitivity of HK cells. Exposure of LK cells to an antibody (anti-L), raised in an HK sheep by injection of LK sheep cells, increased the active K influx at any given Kc. The effect of the antibody was greater at higher intracellular K concentrations, and in cells with very low concentrations of K the antibody had little effect on the pump rate. The failure of anti-L to stimulate the pump in low Kc LK cells was not due to failure of the antibody to bind to the cells. Anti-L combining at the outer surface of the cell reduces the affinity of the pump at the inner surface for K at the inhibitory sites. The maximal pump rate in LK cells at optimal Na and K concentrations is less than the maximal pump rate of HK cells under the same circumstances.


Sign in / Sign up

Export Citation Format

Share Document