scholarly journals Effect of insulin on glucose metabolism in adipocytes from virgin and late-pregnant rats

1984 ◽  
Vol 224 (2) ◽  
pp. 685-688 ◽  
Author(s):  
A Leturque ◽  
M Guerre-Millo ◽  
M Lavau ◽  
J Girard

Under basal conditions (zero insulin), paraovarian adipocytes from 19-day-pregnant rats exhibited the same rates of [U-14C]glucose conversion into CO2 and total lipids as did those from age-matched virgin rats. The dose-response curves for insulin stimulation of glucose metabolism were similar in both groups: maximal response (+100% over basal values) and high sensitivity (half-maximal effect at 0.05 nM-insulin). The present results suggest that the insulin resistance in vivo that occurs during late pregnancy may involve circulating factors lost in vitro.

2001 ◽  
Vol 280 (3) ◽  
pp. R879-R888 ◽  
Author(s):  
J. Andres Melendez ◽  
James M. Vinci ◽  
John J. Jeffrey ◽  
Brian D. Wilcox

Interleukin-1 (IL-1) has been implicated as a participant in preterm labor that is induced by bacterial infection. Previously, we showed that serotonin-induced production of IL-1α by myometrial smooth muscle cells in vitro is also essential for the synthesis of interstitial collagenase. It is therefore likely that IL-1α production in uterine tissues has implications for both the normal physiology of involution and for the pathophysiological mechanisms of preterm labor. The objective of this study was to characterize the serotonin-induced production of IL-1α by myometrial cultures in vitro and to assess the production of IL-1α and its relationship to collagenase production in vivo during pregnancy and the postpartum period. Immunohistochemistry demonstrated IL-1α protein in the nuclei and cytoplasm of serotonin-treated myometrial cells. IL-1α levels were decreased by treatment with progesterone or IL-1-receptor antagonist but were unaffected by lipopolysaccharide. Western analysis of myometrium from pregnant rats showed low levels of IL-1α during midpregnancy with increased concentrations at days 21 and 22 and postpartum. IL-1α mRNA levels also increased from days 15to 22. Levels of mRNA for IL-1β also increased, although to a lesser degree than IL-1α. Both mRNAs decreased postpartum. Conversely, mRNA for interstitial collagenase was barely detectable at term but increased postpartum. Together, these data show that serotonin stimulates IL-1α production in vitro and indicate that normal myometrium from pregnant rats is an identifiable source of IL-1 during late pregnancy. The findings are consistent with the possibility that myometrial IL-1α participates in normal labor as well as the postpartum production of interstitial collagenase.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243365
Author(s):  
Ivone Jimenez-Toro ◽  
Carlos A. Rodriguez ◽  
Andres F. Zuluaga ◽  
Julian D. Otalvaro ◽  
Omar Vesga

The combination of ampicillin (AMP) and ceftriaxone (CRO) is considered synergistic against Enterococcus faecalis based on in vitro tests and the rabbit endocarditis model, however, in vitro assays are limited by the use of fixed antibiotic concentrations and the rabbit model by poor bacterial growth, high variability, and the use of point dose-effect estimations, that may lead to inaccurate assessment of antibiotic combinations and hinder optimal translation. Here, we tested AMP+CRO against two strains of E. faecalis and one of E. faecium in an optimized mouse thigh infection model that yields high bacterial growth and allows to define the complete dose-response relationship. By fitting Hill’s sigmoid model and estimating the parameters maximal effect (Emax) and effective dose 50 (ED50), the following interactions were defined: synergism (Emax increase ≥2 log10 CFU/g), antagonism (Emax reduction ≥1 log10 CFU/g) and potentiation (ED50 reduction ≥50% without changes in Emax). AMP monotherapy was effective against the three strains, yielding valid dose-response curves in terms of dose and the index fT>MIC. CRO monotherapy showed no effect. The combination AMP+CRO against E. faecalis led to potentiation (59–81% ED50 reduction) and not synergism (no changes in Emax). Against E. faecium, the combination was indifferent. The optimized mouse infection model allowed to obtain the complete dose-response curve of AMP+CRO and to define its interaction based on pharmacodynamic parameter changes. Integrating these results with the pharmacokinetics will allow to derive the PK/PD index bound to the activity of the combination, essential for proper translation to the clinic.


1994 ◽  
Vol 303 (3) ◽  
pp. 941-947 ◽  
Author(s):  
G C Burdge ◽  
A N Hunt ◽  
A D Postle

Late pregnancy in the rat (gestational ages 16-21 days) was accompanied by a specific increase in hepatic phosphatidylcholine (PC) and phosphatidylethanolamine (PE) molecular species containing C16:0 at the sn-1 position and polyunsaturated essential fatty acids (PUFA), in particular C22:6(n-3), at the sn-2 position. Incorporation of either CDP:[Me-14C]choline or CDP:[1,2-14C]-ethanolamine into hepatic microsomal sn-1 C16:0 PC or PE molecular species in vitro was greater at term than in non-pregnant animals, suggesting modifications to the composition of specific diacylglycerol (DAG) pools destined for synthesis of either PC or PE. Also, incorporation of [Me-14C]choline or [Me-14C]methionine into hepatic PC in vivo over 6 h in term pregnant rats was consistent with decreased phospholipase A1-dependent acyl remodelling of sn-1 C16:0 to sn-1 C18:0 molecular species. There was, however, no evidence to support any change to the specificity of acyl remodelling. The rate of PC synthesis by the de novo pathway in vivo was increased in term liver compared with non-pregnant animals, accompanied by increased choline-phosphotransferase activity in vitro in d21 liver microsomes. The rate of PC synthesis by PE N-methylation did not appear to change during pregnancy. Changes in composition of plasma PC species at term reflected those of newly synthesized hepatic PC. Our data suggest supply of PUFA to the developing fetal rat is the result of specific adaptations to maternal hepatic phospholipid biosynthesis rather than passive transfer from the maternal diet.


2019 ◽  
Vol 2 (4) ◽  
pp. 83-98 ◽  
Author(s):  
André De Lima Mota ◽  
Bruna Vitorasso Jardim-Perassi ◽  
Tialfi Bergamin De Castro ◽  
Jucimara Colombo ◽  
Nathália Martins Sonehara ◽  
...  

Breast cancer is the most common cancer among women and has a high mortality rate. Adverse conditions in the tumor microenvironment, such as hypoxia and acidosis, may exert selective pressure on the tumor, selecting subpopulations of tumor cells with advantages for survival in this environment. In this context, therapeutic agents that can modify these conditions, and consequently the intratumoral heterogeneity need to be explored. Melatonin, in addition to its physiological effects, exhibits important anti-tumor actions which may associate with modification of hypoxia and Warburg effect. In this study, we have evaluated the action of melatonin on tumor growth and tumor metabolism by different markers of hypoxia and glucose metabolism (HIF-1α, glucose transporters GLUT1 and GLUT3 and carbonic anhydrases CA-IX and CA-XII) in triple negative breast cancer model. In an in vitro study, gene and protein expressions of these markers were evaluated by quantitative real-time PCR and immunocytochemistry, respectively. The effects of melatonin were also tested in a MDA-MB-231 xenograft animal model. Results showed that melatonin treatment reduced the viability of MDA-MB-231 cells and tumor growth in Balb/c nude mice (p <0.05). The treatment significantly decreased HIF-1α gene and protein expression concomitantly with the expression of GLUT1, GLUT3, CA-IX and CA-XII (p <0.05). These results strongly suggest that melatonin down-regulates HIF-1α expression and regulates glucose metabolism in breast tumor cells, therefore, controlling hypoxia and tumor progression. 


1988 ◽  
Vol 65 (6) ◽  
pp. 2679-2686 ◽  
Author(s):  
S. T. Kariya ◽  
S. A. Shore ◽  
W. A. Skornik ◽  
K. Anderson ◽  
R. H. Ingram ◽  
...  

The maximal effect induced by methacholine (MCh) aerosols on pulmonary resistance (RL), and the effects of altering lung volume and O3 exposure on these induced changes in RL, was studied in five anesthetized and paralyzed dogs. RL was measured at functional residual capacity (FRC), and lung volumes above and below FRC, after exposure to MCh aerosols generated from solutions of 0.1-300 mg MCh/ml. The relative site of response was examined by magnifying parenchymal [RL with large tidal volume (VT) at fast frequency (RLLS)] or airway effects [RL with small VT at fast frequency (RLSF)]. Measurements were performed on dogs before and after 2 h of exposure to 3 ppm O3. MCh concentration-response curves for both RLLS and RLSF were sigmoid shaped. Alterations in mean lung volume did not alter RLLS; however, RLSF was larger below FRC than at higher lung volumes. Although O3 exposure resulted in small leftward shifts of the concentration-response curve for RLLS, the airway dominated index of RL (RLSF) was not altered by O3 exposure, nor was the maximal response using either index of RL. These data suggest O3 exposure does not affect MCh responses in conducting airways; rather, it affects responses of peripheral contractile elements to MCh, without changing their maximal response.


Author(s):  
Danlei Wang ◽  
Maartje H. Rietdijk ◽  
Lenny Kamelia ◽  
Peter J. Boogaard ◽  
Ivonne M. C. M. Rietjens

AbstractDevelopmental toxicity testing is an animal-intensive endpoints in toxicity testing and calls for animal-free alternatives. Previous studies showed the applicability of an in vitro–in silico approach for predicting developmental toxicity of a range of compounds, based on data from the mouse embryonic stem cell test (EST) combined with physiologically based kinetic (PBK) modelling facilitated reverse dosimetry. In the current study, the use of this approach for predicting developmental toxicity of polycyclic aromatic hydrocarbons (PAHs) was evaluated, using benzo[a]pyrene (BaP) as a model compound. A rat PBK model of BaP was developed to simulate the kinetics of its main metabolite 3-hydroxybenzo[a]pyrene (3-OHBaP), shown previously to be responsible for the developmental toxicity of BaP. Comparison to in vivo kinetic data showed that the model adequately predicted BaP and 3-OHBaP blood concentrations in the rat. Using this PBK model and reverse dosimetry, a concentration–response curve for 3-OHBaP obtained in the EST was translated into an in vivo dose–response curve for developmental toxicity of BaP in rats upon single or repeated dose exposure. The predicted half maximal effect doses (ED50) amounted to 67 and 45 mg/kg bw being comparable to the ED50 derived from the in vivo dose–response data reported for BaP in the literature, of 29 mg/kg bw. The present study provides a proof of principle of applying this in vitro–in silico approach for evaluating developmental toxicity of BaP and may provide a promising strategy for predicting the developmental toxicity of related PAHs, without the need for extensive animal testing.


2020 ◽  
Vol 39 (1) ◽  
pp. 209-221
Author(s):  
Jiafeng Wan ◽  
Xiaoyuan Zhang ◽  
Kai Zhang ◽  
Zhiqiang Su

Abstract In recent years, nanomaterials have attracted lots of attention from researchers due to their unique properties. Nanometer fluorescent materials, such as organic dyes, semiconductor quantum dots (QDs), metal nano-clusters (MNCs), carbon dots (CDs), etc., are widely used in biological imaging due to their high sensitivity, short response time, and excellent accuracy. Nanometer fluorescent probes can not only perform in vitro imaging of organisms but also achieve in vivo imaging. This provides medical staff with great convenience in cancer treatment. Combined with contemporary medical methods, faster and more effective treatment of cancer is achievable. This article explains the response mechanism of three-nanometer fluorescent probes: the principle of induced electron transfer (PET), the principle of fluorescence resonance energy transfer (FRET), and the principle of intramolecular charge transfer (ICT), showing the semiconductor QDs, precious MNCs, and CDs. The excellent performance of the three kinds of nano fluorescent materials in biological imaging is highlighted, and the application of these three kinds of nano fluorescent probes in targeted biological imaging is also introduced. Nanometer fluorescent materials will show their significance in the field of biomedicine.


Microbiology ◽  
2014 ◽  
Vol 160 (10) ◽  
pp. 2157-2169 ◽  
Author(s):  
Sudarson Sundarrajan ◽  
Junjappa Raghupatil ◽  
Aradhana Vipra ◽  
Nagalakshmi Narasimhaswamy ◽  
Sanjeev Saravanan ◽  
...  

P128 is an anti-staphylococcal protein consisting of the Staphylococcus aureus phage-K-derived tail-associated muralytic enzyme (TAME) catalytic domain (Lys16) fused with the cell-wall-binding SH3b domain of lysostaphin. In order to understand the mechanism of action and emergence of resistance to P128, we isolated mutants of Staphylococcus spp., including meticillin-resistant Staphylococcus aureus (MRSA), resistant to P128. In addition to P128, the mutants also showed resistance to Lys16, the catalytic domain of P128. The mutants showed loss of fitness as shown by reduced rate of growth in vitro. One of the mutants tested was found to show reduced virulence in animal models of S. aureus septicaemia suggesting loss of fitness in vivo as well. Analysis of the antibiotic sensitivity pattern showed that the mutants derived from MRSA strains had become sensitive to meticillin and other β-lactams. Interestingly, the mutant cells were resistant to the lytic action of phage K, although the phage was able to adsorb to these cells. Sequencing of the femA gene of three P128-resistant mutants showed either a truncation or deletion in femA, suggesting that improper cross-bridge formation in S. aureus could be causing resistance to P128. Using glutathione S-transferase (GST) fusion peptides as substrates it was found that both P128 and Lys16 were capable of cleaving a pentaglycine sequence, suggesting that P128 might be killing S. aureus by cleaving the pentaglycine cross-bridge of peptidoglycan. Moreover, peptides corresponding to the reported cross-bridge of Staphylococcus haemolyticus (GGSGG, AGSGG), which were not cleaved by lysostaphin, were cleaved efficiently by P128. This was also reflected in high sensitivity of S. haemolyticus to P128. This showed that in spite of sharing a common mechanism of action with lysostaphin, P128 has unique properties, which allow it to act on certain lysostaphin-resistant Staphylococcus strains.


1999 ◽  
Vol 90 (6) ◽  
pp. 1723-1732. ◽  
Author(s):  
Paul A. Iaizzo ◽  
Brooks A. Johnson ◽  
Kaoru Nagao ◽  
William J. Gallagher

Background Chlorocresols are used as preservatives in numerous commercial drugs that have been shown to induce myoplasmic Ca2+ release; the most potent isoform is 4-chloro-m-cresol. The aims of this study were to (1) examine the in vivo effects of 4-chloro-m-cresol on swine susceptible to malignant hyperthermia and (2) contrast in vivo versus in vitro dose-response curves. Methods Susceptible swine (weight: 38.5 kg+/-3.55 kg) were anesthetized and monitored for variations in physiological responses, including end-tidal CO2, heart rate, blood pressure, blood chemistry, and temperatures. In the first animals studied, 4-chloro-m-cresol, at equivalent cumulative doses of 0.14, 0.28, 0.57, 1.14, 2.27, 4.54, and 9.08 mg/kg (n = 3; 12.5, 25, 50, 100, 200, 400, and 800 micromol) were administered, and in a second group, larger doses were used: 1.14, 3.41, 7.95, 17.04 (n = 4), and/or 35.22 (n = 1) mg/kg (100, 300, 700, 1,500, and/or 3,100 micromol). For comparison, in vitro rectus abdominis muscle preparations obtained from normal and susceptible swine were exposed to 4-chloro-m-cresol, at cumulative concentrations of 6.25, 12.5, 25, 50, 100, 200, 400, 800, and 1,600 micromol; standard caffeine and halothane contracture testing was also performed. Results Episodes of malignant hyperthermia were not triggered in response to administration of low doses of 4-chloro-m-cresol, but transient cardiovascular reactions (e.g., tachycardia, arrhythmias, and hypotension) were observed. Subsequently, episodes in these animals were triggered when halothane (0.87; 1 MAC) and succinylcholine (2 mg/kg) were given. Animals administered the higher doses of 4-chloro-m-cresol all had fulminant episodes of malignant hyperthermia that were fatal, when equivalent cumulative concentrations were greater than 1,500 micromol. The levels of 4-chloro-m-cresol in the plasma rapidly decreased: e.g., 5 min postadministration of the 1,500-micromol dose, the mean plasma level was only 52+/-18 micromol (n = 4). Hemolysis was detected following 4-chloro-m-cresol administration at concentrations &gt; 200 micromol. In vitro, muscle from susceptible animals elicited contractures &gt; 200 mg at 50-micromol bath concentrations of 4-chloro-m-cresol (n = 29), whereas normal muscle did not elicit such contractures until bath concentrations were &gt; 800 micromol (n = 10). Conclusions 4-chloro-m-cresol is a trigger of malignant hyperthermia in susceptible swine, but only when serum concentrations are far above those likely to be encountered in humans. A relatively low concentration of 4-chloro-m-cresol, 50 micromol, is sufficient to activate sarcoplasmic [Ca+2] release in vitro (e.g., contractures); this same bolus dose administered in vivo (0.57 mg/kg) has minimal effects due to the rapid decrease in its plasma levels.


Author(s):  
Shensheng Zhao ◽  
Sebastiaan Wesseling ◽  
Bert Spenkelink ◽  
Ivonne M. C. M. Rietjens

AbstractThe present study predicts in vivo human and rat red blood cell (RBC) acetylcholinesterase (AChE) inhibition upon diazinon (DZN) exposure using physiological based kinetic (PBK) modelling-facilitated reverse dosimetry. Due to the fact that both DZN and its oxon metabolite diazoxon (DZO) can inhibit AChE, a toxic equivalency factor (TEF) was included in the PBK model to combine the effect of DZN and DZO when predicting in vivo AChE inhibition. The PBK models were defined based on kinetic constants derived from in vitro incubations with liver fractions or plasma of rat and human, and were used to translate in vitro concentration–response curves for AChE inhibition obtained in the current study to predicted in vivo dose–response curves. The predicted dose–response curves for rat matched available in vivo data on AChE inhibition, and the benchmark dose lower confidence limits for 10% inhibition (BMDL10 values) were in line with the reported BMDL10 values. Humans were predicted to be 6-fold more sensitive than rats in terms of AChE inhibition, mainly because of inter-species differences in toxicokinetics. It is concluded that the TEF-coded DZN PBK model combined with quantitative in vitro to in vivo extrapolation (QIVIVE) provides an adequate approach to predict RBC AChE inhibition upon acute oral DZN exposure, and can provide an alternative testing strategy for derivation of a point of departure (POD) in risk assessment.


Sign in / Sign up

Export Citation Format

Share Document