scholarly journals Nucleotide sequence of the putative regulatory region of mouse lactate dehydrogenase-A gene

1986 ◽  
Vol 235 (2) ◽  
pp. 435-439 ◽  
Author(s):  
K M Fukasawa ◽  
S S L Li

The nucleotide sequence of approx. 3 kilobases including the regulatory region, a non-coding exon and the first protein-coding exon from mouse lactate dehydrogenase-A (LDH-A) gene has been determined. The putative initiation sites of transcription and translation were deduced by comparing the nucleotide sequence of mouse LDH-A gene with those of a mouse LDH-A processed pseudogene and the LDH-A full-length cDNAs from rat and human. The tentative TATA and CAAT boxes, and the hexanucleotides CCGCCC have been identified. The sequence of AAATCTTGCTCAA of mouse LDH-A gene has also been found to show striking homology to the cyclic AMP-responsive sequences of eukaryotic genes regulated by cyclic AMP. It has been reported previously that the protein-coding sequence of mouse LDH-A gene is interrupted by six introns and the 3′ untranslated sequence of 485 nucleotides is not interrupted [Li, Tiano, Fukasawa, Yagi, Shimiza, Sharief, Nakashima & Pan (1985) Eur. J. Biochem. 149, 215-225]. An additional intron of 1653 base-pairs was found in the 5′ untranslated sequence of 101 nucleotides at 24 nucleotides upstream to the translation start site. Thus, mouse LDH-A gene containing seven introns spans approx. 11 kilobases and its length of mature mRNA is 1582 nucleotides, excluding the poly(A) tail.

1988 ◽  
Vol 8 (4) ◽  
pp. 1821-1825
Author(s):  
K A Kelley ◽  
J W Chamberlain ◽  
J A Nolan ◽  
A L Horwich ◽  
F Kalousek ◽  
...  

In an attempt to use mouse metallothionein-I (mMT-I) regulatory sequences to direct expression of human ornithine transcarbamylase in the liver of transgenic animals, fusion genes joining either 1.6 kilobases or 185 base pairs of the mMT-I regulatory region to the human ornithine transcarbamylase protein-coding sequence were used to produce transgenic mice. In mice carrying the fusion gene with 1.6 kilobases of the mMT-I 5'-flanking sequences, transgene expression was observed in a wide range of tissues, but, unexpectedly, expression in liver was never observed. Surprisingly, in mice carrying the fusion gene regulated by only 185 base pairs of the mMT-I 5'-flanking sequences, the transgene was expressed exclusively in male germ cells during the tetraploid, pachytene stage of meiosis.


1988 ◽  
Vol 8 (4) ◽  
pp. 1821-1825 ◽  
Author(s):  
K A Kelley ◽  
J W Chamberlain ◽  
J A Nolan ◽  
A L Horwich ◽  
F Kalousek ◽  
...  

In an attempt to use mouse metallothionein-I (mMT-I) regulatory sequences to direct expression of human ornithine transcarbamylase in the liver of transgenic animals, fusion genes joining either 1.6 kilobases or 185 base pairs of the mMT-I regulatory region to the human ornithine transcarbamylase protein-coding sequence were used to produce transgenic mice. In mice carrying the fusion gene with 1.6 kilobases of the mMT-I 5'-flanking sequences, transgene expression was observed in a wide range of tissues, but, unexpectedly, expression in liver was never observed. Surprisingly, in mice carrying the fusion gene regulated by only 185 base pairs of the mMT-I 5'-flanking sequences, the transgene was expressed exclusively in male germ cells during the tetraploid, pachytene stage of meiosis.


1985 ◽  
Vol 231 (3) ◽  
pp. 537-541 ◽  
Author(s):  
F Z Chung ◽  
H Tsujibo ◽  
U Bhattacharyya ◽  
F S Sharief ◽  
S S-L Li

A human genomic clone containing the lactate dehydrogenase-A (LDH-A) gene of approx. 12 kilobases in length was isolated and characterized. The protein-coding sequence is interrupted by six introns, and the positions of these introns are at the random coil regions or near the ends of secondary structures located on the surface of the LDH-A molecule. An additional intron is present at 24 nucleotides 5′ to the translation initiation codon ATG, while the 3′ untranslated sequence of 565 nucleotides is not interrupted. The genomic blot analysis of human placenta DNA indicates the presence of multiple LDH-A gene-related sequences.


2021 ◽  
Author(s):  
Rodrigo S Reis ◽  
Jules Deforges ◽  
Romy R Schmidt ◽  
Jos H M Schippers ◽  
Yves Poirier

Abstract A large portion of eukaryotic genes are associated with noncoding, natural antisense transcripts (NATs). Despite sharing extensive sequence complementarity with their sense mRNAs, mRNA-NAT pairs elusively often evade dsRNA-cleavage and siRNA-triggered silencing. More surprisingly, some NATs enhance translation of their sense mRNAs by yet unknown mechanism(s). Here we show that translation enhancement of the rice (Oryza sativa) PHOSPHATE1.2 (PHO1.2) mRNA is enabled by specific structural rearrangements guided by its noncoding antisense RNA (cis-NATpho1.2). Their interaction in vitro revealed no evidence of widespread intermolecular dsRNA formation, but rather specific local changes in nucleotide base-pairing, leading to higher flexibility of PHO1.2 mRNA at a key high GC regulatory region inhibiting translation, approximately 350 nucleotides downstream of the start codon. Sense-antisense RNA interaction increased formation of the 80S complex in PHO1.2, possibly by inducing structural rearrangement within this inhibitory region, thus making this mRNA more accessible to 60S. This work presents a framework for nucleotide-resolution studies of functional mRNA-antisense pairs. One-sentence summary: Interaction between PHO1.2 mRNA and its cis-natural antisense transcript enhances translation via a mechanism involving a local conformational shift and disruption of a key inhibitory region.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Svetlana Kalmykova ◽  
Marina Kalinina ◽  
Stepan Denisov ◽  
Alexey Mironov ◽  
Dmitry Skvortsov ◽  
...  

AbstractThe ability of nucleic acids to form double-stranded structures is essential for all living systems on Earth. Current knowledge on functional RNA structures is focused on locally-occurring base pairs. However, crosslinking and proximity ligation experiments demonstrated that long-range RNA structures are highly abundant. Here, we present the most complete to-date catalog of conserved complementary regions (PCCRs) in human protein-coding genes. PCCRs tend to occur within introns, suppress intervening exons, and obstruct cryptic and inactive splice sites. Double-stranded structure of PCCRs is supported by decreased icSHAPE nucleotide accessibility, high abundance of RNA editing sites, and frequent occurrence of forked eCLIP peaks. Introns with PCCRs show a distinct splicing pattern in response to RNAPII slowdown suggesting that splicing is widely affected by co-transcriptional RNA folding. The enrichment of 3’-ends within PCCRs raises the intriguing hypothesis that coupling between RNA folding and splicing could mediate co-transcriptional suppression of premature pre-mRNA cleavage and polyadenylation.


Archaea ◽  
2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Reema K. Gudhka ◽  
Brett A. Neilan ◽  
Brendan P. Burns

Halococcus hamelinensiswas the first archaeon isolated from stromatolites. These geomicrobial ecosystems are thought to be some of the earliest known on Earth, yet, despite their evolutionary significance, the role of Archaea in these systems is still not well understood. Detailed here is the genome sequencing and analysis of an archaeon isolated from stromatolites. The genome ofH. hamelinensisconsisted of 3,133,046 base pairs with an average G+C content of 60.08% and contained 3,150 predicted coding sequences or ORFs, 2,196 (68.67%) of which were protein-coding genes with functional assignments and 954 (29.83%) of which were of unknown function. Codon usage of theH. hamelinensisgenome was consistent with a highly acidic proteome, a major adaptive mechanism towards high salinity. Amino acid transport and metabolism, inorganic ion transport and metabolism, energy production and conversion, ribosomal structure, and unknown function COG genes were overrepresented. The genome ofH. hamelinensisalso revealed characteristics reflecting its survival in its extreme environment, including putative genes/pathways involved in osmoprotection, oxidative stress response, and UV damage repair. Finally, genome analyses indicated the presence of putative transposases as well as positive matches of genes ofH. hamelinensisagainst various genomes of Bacteria, Archaea, and viruses, suggesting the potential for horizontal gene transfer.


1985 ◽  
Vol 5 (1) ◽  
pp. 17-26
Author(s):  
L Naumovski ◽  
G Chu ◽  
P Berg ◽  
E C Friedberg

We determined the complete nucleotide sequence of the RAD3 gene of Saccharomyces cerevisiae. The coding region of the gene contained 2,334 base pairs that could encode a protein with a calculated molecular weight of 89,796. Analysis of RAD3 mRNA by Northern blots and by S1 nuclease mapping indicated that the transcript was approximately 2.5 kilobases and did not contain intervening sequences. Fusions between the RAD3 gene and the lac'Z gene of Escherichia coli were constructed and used to demonstrate that the RAD3 gene was not inducible by DNA damage caused by UV radiation or 4-nitroquinoline-1-oxide. Two UV-sensitive chromosomal mutant alleles of RAD3, rad3-1 and rad3-2, were rescued by gap repair of a centromeric plasmid, and their sequences were determined. The rad3-1 mutation changed a glutamic acid to lysine, and the rad3-2 mutation changed a glycine to arginine. Previous studies have shown that disruption of the RAD3 gene results in loss of an essential function and is associated with inviability of haploid cells. In the present experiments, plasmids carrying the rad3-1 and rad3-2 mutations were introduced into haploid cells containing a disrupted RAD3 gene. These plasmids expressed the essential function of RAD3 but not its DNA repair function. A 74-base-pair deletion at the 3' end of the RAD3 coding region or a fusion of this deletion to the E. coli lac'Z gene did not affect either function of RAD3.


1989 ◽  
Vol 9 (11) ◽  
pp. 4660-4669
Author(s):  
J Pavlovic ◽  
B Haribabu ◽  
R P Dottin

The signal transduction pathways that lead to gene induction are being intensively investigated in Dictyostelium discoideum. We have identified by deletion and transformation analysis a sequence element necessary for induction of a gene coding for uridine diphosphoglucose pyrophosphorylase (UDPGP1) of D. discoideum in response to extracellular cyclic AMP (cAMP). This regulatory element is located 380 base pairs upstream of the transcription start site and contains a G+C-rich partially palindromic sequence. It is not required for transcription per se but is required for induction of the gene in response to the stimulus of extracellular cAMP. The cAMP response sequence is also required for induction of the gene during normal development. A second A+T-rich cis-acting region located immediately downstream of the cAMP response sequence appears to be essential for the basal level of expression of the UDPGP1 gene. The position of the cAMP response element coincides with a DNase I-hypersensitive site that is observed when the UDPGP1 gene is actively transcribed.


Sign in / Sign up

Export Citation Format

Share Document