scholarly journals Catecholamine activation of pyruvate dehydrogenase in white adipose tissue of the rat in vivo

1987 ◽  
Vol 241 (2) ◽  
pp. 415-419 ◽  
Author(s):  
E Kilgour ◽  
R G Vernon

Intraperitoneal injections of noradrenaline or adrenaline into rats increased the proportion of pyruvate dehydrogenase in the active state in white adipose tissue; this effect of catecholamines was also apparent in streptozotocin-diabetic rats, showing that it was not due to an increase in serum insulin concentration. The catecholamine-induced increase in pyruvate dehydrogenase of white adipose tissue in vivo was completely blocked by prior injection of either the beta-antagonist propranolol or the alpha 1-antagonist prazosin. Cervical dislocation of conscious rats increased pyruvate dehydrogenase activity of white adipose tissue, which was prevented by prior injection of propranolol. Adrenaline (30 nM) activated pyruvate dehydrogenase in white adipocytes in vitro; the maximum effect of adrenaline required activation of both alpha 1- and beta-receptors. The results show that catecholamines activate pyruvate dehydrogenase of white adipose tissue both in vivo and in vitro and that this effect is mediated by a combination of alpha 1- and beta-adrenergic receptors.

Metabolism ◽  
2001 ◽  
Vol 50 (6) ◽  
pp. 674-680 ◽  
Author(s):  
Margaret C. Cam ◽  
Roger W. Brownsey ◽  
Brian Rodrigues ◽  
John H. McNeill

2014 ◽  
Vol 92 (5) ◽  
pp. 405-417 ◽  
Author(s):  
Xian-Wei Li ◽  
Yan Liu ◽  
Wei Hao ◽  
Jie-Ren Yang

Sequoyitol decreases blood glucose, improves glucose intolerance, and enhances insulin signaling in ob/ob mice. The aim of this study was to investigate the effects of sequoyitol on diabetic nephropathy in rats with type 2 diabetes mellitus and the mechanism of action. Diabetic rats, induced with a high-fat diet and a low dose of streptozotocin, and were administered sequoyitol (12.5, 25.0, and 50.0 mg·(kg body mass)−1·d−1) for 6 weeks. The levels of fasting blood glucose (FBG), serum insulin, blood urea nitrogen (BUN), and serum creatinine (SCr) were measured. The expression levels of p22phox, p47phox, NF-κB, and TGF-β1 were measured using immunohistochemisty, real-time PCR, and (or) Western blot. The total antioxidative capacity (T-AOC), as well as the levels of malondialdehyde (MDA) and reactive oxygen species (ROS) were also determined. The results showed that sequoyitol significantly decreased FBG, BUN, and SCr levels, and increased the insulin levels in diabetic rats. The level of T-AOC was significantly increased, while ROS and MDA levels and the expression of p22phox, p47phox, NF-κB, and TGF-β1 were decreased with sequoyitol treatment both in vivo and in vitro. These results suggested that sequoyitol ameliorates the progression of diabetic nephropathy in rats, as induced by a high-fat diet and a low dose of streptozotocin, through its glucose-lowering effects, antioxidant activity, and regulation of TGF-β1 expression.


2012 ◽  
Vol 302 (6) ◽  
pp. E705-E713 ◽  
Author(s):  
Xin Cui ◽  
Yuhui Wang ◽  
Lingjun Meng ◽  
Weihua Fei ◽  
Jingna Deng ◽  
...  

Berardinelli-Seip congenital lipodystrophy type 2 (BSCL2) is a recessive disorder characterized by an almost complete loss of adipose tissue, insulin resistance, and fatty liver. BSCL2 is caused by loss-of-function mutations in the BSCL2/seipin gene, which encodes seipin. The essential role for seipin in adipogenesis has recently been established both in vitro and in vivo. However, seipin is highly upregulated at later stages of adipocyte development, and its role in mature adipocytes remains to be elucidated. We therefore generated transgenic mice overexpressing a short isoform of human BSCL2 gene (encoding 398 amino acids) using the adipocyte-specific aP2 promoter. The transgenic mice produced ∼150% more seipin than littermate controls in white adipose tissue. Surprisingly, the increased expression of seipin markedly reduced the mass of white adipose tissue and the size of adipocytes and lipid droplets. This may be due in part to elevated lipolysis rates in the transgenic mice. Moreover, there was a nearly 50% increase in the triacylglycerol content of transgenic liver. These results suggest that seipin promotes the differentiation of preadipocytes but may inhibit lipid storage in mature adipocytes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mingchen Xiong ◽  
Weijie Hu ◽  
Yufang Tan ◽  
Honghao Yu ◽  
Qi Zhang ◽  
...  

Obesity is associated with energy metabolic disturbance and is caused by long-term excessive energy storage in white adipose tissue (WAT). The WAT browning potentially reduces excessive energy accumulation, contributing an attractive target to combat obesity. As a pivotal regulator of cell growth, the transcription factor E2F1 activity dysregulation leads to metabolic complications. The regulatory effect and underlying mechanism of E2F1 knockout on WAT browning, have not been fully elucidated. To address this issue, in this study, the in vivo adipose morphology, mitochondria quantities, uncoupling protein 1 (UCP-1), autophagy-related genes in WAT of wild-type (WT) and E2F1–/– mice were detected. Furthermore, we evaluated the UCP-1, and autophagy-related gene expression in WT and E2F1–/– adipocyte in vitro. The results demonstrated that E2F1 knockout could increase mitochondria and UCP-1 expression in WAT through autophagy suppression in mice, thus promoting WAT browning. Besides, adipocytes lacking E2F1 showed upregulated UCP-1 and downregulated autophagy-related genes expression in vitro. These results verified that E2F1 knockout exerted effects on inducing mice WAT browning through autophagy inhibition in vivo and in vitro. These findings regarding the molecular mechanism of E2F1-modulated autophagy in controlling WAT plasticity, provide a novel insight into the functional network with the potential therapeutic application against obesity.


1999 ◽  
Vol 344 (2) ◽  
pp. 313-320 ◽  
Author(s):  
Kallol DAS ◽  
Renée Y. LEWIS ◽  
Terry P. COMBATSIARIS ◽  
Ying LIN ◽  
Lawrence SHAPIRO ◽  
...  

We report the identification of a novel mouse protein closely related to the family of mitochondrial uncoupling proteins and the oxoglutarate carrier. The cDNA encodes a protein of 287 amino acids that shares all the hallmark features of the mitochondrial transporter superfamily, including six predicted transmembrane domains. It is nearly identical to the sequence recently reported for the rat mitochondrial dicarboxylate carrier (DIC). We find that murine DIC (mDIC) is expressed at very high levels in mitochondria of white adipocytes and is strongly induced in the course of 3T3-L1 adipogenesis. To determine the consequences of the presence of mDIC on the mitochondrial membrane potential, we transiently expressed mDIC in 293-T cells. Overexpression of mDIC leads to significant mitochondrial hyperpolarization. In addition, exposure to cold down-regulates mDIC levels in vivo. In contrast, free fatty acids lead to an up-regulation of mDIC protein in 3T3-L1 adipocytes. This is the first report demonstrating preferential expression in white adipose tissue of any mitochondrial transporter. However, it remains to be determined which metabolic pathways most critically depend on high level expression of mDIC in the adipocyte.


1987 ◽  
Vol 243 (1) ◽  
pp. 69-74 ◽  
Author(s):  
E Kilgour ◽  
R G Vernon

Changes are described in the total pyruvate dehydrogenase (PDH) activity, the proportion of PDH in the active state and its control by insulin and noradrenaline in vivo, in white adipose tissue, liver, skeletal muscle and mammary gland with pregnancy, lactation and on weaning. Lactation resulted in a decrease in total PDH in white adipose tissue and an increase in the mammary gland, whereas the proportion in the active state decreased in muscle and increased in the mammary gland. The ability of insulin to activate PDH of white adipose tissue was lost during lactation, whereas it was retained by the other tissues. The ability of noradrenaline to activate PDH was decreased in white adipose tissue but increased in liver during lactation. These various adaptations should limit the use of glucose and lactate carbon by adipose tissue and skeletal muscle during lactation and thereby facilitate their preferential utilization by the mammary gland.


2016 ◽  
Vol 310 (1) ◽  
pp. R55-R65 ◽  
Author(s):  
Yun-Hee Lee ◽  
Sang-Nam Kim ◽  
Hyun-Jung Kwon ◽  
Krishna Rao Maddipati ◽  
James G. Granneman

De novo brown adipogenesis involves the proliferation and differentiation of progenitors, yet the mechanisms that guide these events in vivo are poorly understood. We previously demonstrated that treatment with a β3-adrenergic receptor (ADRB3) agonist triggers brown/beige adipogenesis in gonadal white adipose tissue following adipocyte death and clearance by tissue macrophages. The close physical relationship between adipocyte progenitors and tissue macrophages suggested that the macrophages that clear dying adipocytes might generate proadipogenic factors. Flow cytometric analysis of macrophages from mice treated with CL 316,243 identified a subpopulation that contained elevated lipid and expressed CD44. Lipidomic analysis of fluorescence-activated cell sorting-isolated macrophages demonstrated that CD44+ macrophages contained four- to five-fold higher levels of the endogenous peroxisome-proliferator activated receptor gamma (PPARγ) ligands 9-hydroxyoctadecadienoic acid (HODE), and 13-HODE compared with CD44− macrophages. Gene expression profiling and immunohistochemistry demonstrated that ADRB3 agonist treatment upregulated expression of ALOX15, the lipoxygenase responsible for generating 9-HODE and 13-HODE. Using an in vitro model of adipocyte efferocytosis, we found that IL-4-primed tissue macrophages accumulated lipid from dying fat cells and upregulated expression of Alox15. Furthermore, treatment of differentiating adipocytes with 9-HODE and 13-HODE potentiated brown/beige adipogenesis. Collectively, these data indicate that noninflammatory removal of adipocyte remnants and coordinated generation of PPARγ ligands by M2 macrophages provides localized adipogenic signals to support de novo brown/beige adipogenesis.


Sign in / Sign up

Export Citation Format

Share Document