scholarly journals Transcription Factor E2F1 Knockout Promotes Mice White Adipose Tissue Browning Through Autophagy Inhibition

2021 ◽  
Vol 12 ◽  
Author(s):  
Mingchen Xiong ◽  
Weijie Hu ◽  
Yufang Tan ◽  
Honghao Yu ◽  
Qi Zhang ◽  
...  

Obesity is associated with energy metabolic disturbance and is caused by long-term excessive energy storage in white adipose tissue (WAT). The WAT browning potentially reduces excessive energy accumulation, contributing an attractive target to combat obesity. As a pivotal regulator of cell growth, the transcription factor E2F1 activity dysregulation leads to metabolic complications. The regulatory effect and underlying mechanism of E2F1 knockout on WAT browning, have not been fully elucidated. To address this issue, in this study, the in vivo adipose morphology, mitochondria quantities, uncoupling protein 1 (UCP-1), autophagy-related genes in WAT of wild-type (WT) and E2F1–/– mice were detected. Furthermore, we evaluated the UCP-1, and autophagy-related gene expression in WT and E2F1–/– adipocyte in vitro. The results demonstrated that E2F1 knockout could increase mitochondria and UCP-1 expression in WAT through autophagy suppression in mice, thus promoting WAT browning. Besides, adipocytes lacking E2F1 showed upregulated UCP-1 and downregulated autophagy-related genes expression in vitro. These results verified that E2F1 knockout exerted effects on inducing mice WAT browning through autophagy inhibition in vivo and in vitro. These findings regarding the molecular mechanism of E2F1-modulated autophagy in controlling WAT plasticity, provide a novel insight into the functional network with the potential therapeutic application against obesity.

eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Haiying Zhou ◽  
Bo Wan ◽  
Ivan Grubisic ◽  
Tommy Kaplan ◽  
Robert Tjian

Brown adipose tissue (BAT) plays an essential role in metabolic homeostasis by dissipating energy via thermogenesis through uncoupling protein 1 (UCP1). Previously, we reported that the TATA-binding protein associated factor 7L (TAF7L) is an important regulator of white adipose tissue (WAT) differentiation. In this study, we show that TAF7L also serves as a molecular switch between brown fat and muscle lineages in vivo and in vitro. In adipose tissue, TAF7L-containing TFIID complexes associate with PPARγ to mediate DNA looping between distal enhancers and core promoter elements. Our findings suggest that the presence of the tissue-specific TAF7L subunit in TFIID functions to promote long-range chromatin interactions during BAT lineage specification.


2019 ◽  
Vol 20 (21) ◽  
pp. 5377 ◽  
Author(s):  
Martina La Spina ◽  
Eva Galletta ◽  
Michele Azzolini ◽  
Saioa Gomez Zorita ◽  
Sofia Parrasia ◽  
...  

Obesity and related comorbidities are a major health concern. The drugs used to treat these conditions are largely inadequate or dangerous, and a well-researched approach based on nutraceuticals would be highly useful. Pterostilbene (Pt), i.e., 3,5-dimethylresveratrol, has been reported to be effective in animal models of obesity, acting on different metabolic pathways. We investigate here its ability to induce browning of white adipose tissue. Pt (5 µM) was first tested on 3T3-L1 mature adipocytes, and then it was administered (352 µmol/kg/day) to mice fed an obesogenic high-fat diet (HFD) for 30 weeks, starting at weaning. In the cultured adipocytes, the treatment elicited a significant increase of the levels of Uncoupling Protein 1 (UCP1) protein—a key component of thermogenic, energy-dissipating beige/brown adipocytes. In vivo administration antagonized weight increase, more so in males than in females. Analysis of inguinal White Adipose Tissue (WAT) revealed a trend towards browning, with significantly increased transcription of several marker genes (Cidea, Ebf2, Pgc1α, PPARγ, Sirt1, and Tbx1) and an increase in UCP1 protein levels, which, however, did not achieve significance. Given the lack of known side effects of Pt, this study strengthens the candidacy of this natural phenol as an anti-obesity nutraceutical.


Nutrients ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 3195
Author(s):  
Yo-Han Han ◽  
Jeong-Geon Mun ◽  
Hee Dong Jeon ◽  
Dae Hwan Yoon ◽  
Byung-Min Choi ◽  
...  

Background: Cachexia induced by cancer is a systemic wasting syndrome and it accompanies continuous body weight loss with the exhaustion of skeletal muscle and adipose tissue. Cancer cachexia is not only a problem in itself, but it also reduces the effectiveness of treatments and deteriorates quality of life. However, effective treatments have not been found yet. Although Arctii Fructus (AF) has been studied about several pharmacological effects, there were no reports on its use in cancer cachexia. Methods: To induce cancer cachexia in mice, we inoculated CT-26 cells to BALB/c mice through subcutaneous injection and intraperitoneal injection. To mimic cancer cachexia in vitro, we used conditioned media (CM), which was CT-26 colon cancer cells cultured medium. Results: In in vivo experiments, AF suppressed expression of interleukin (IL)-6 and atrophy of skeletal muscle and adipose tissue. As a result, the administration of AF decreased mortality by preventing weight loss. In adipose tissue, AF decreased expression of uncoupling protein 1 (UCP1) by restoring AMP-activated protein kinase (AMPK) activation. In in vitro model, CM increased muscle degradation factors and decreased adipocytes differentiation factors. However, these tendencies were ameliorated by AF treatment in C2C12 myoblasts and 3T3-L1 cells. Conclusion: Taken together, our study demonstrated that AF could be a therapeutic supplement for patients suffering from cancer cachexia.


2012 ◽  
Vol 302 (6) ◽  
pp. E705-E713 ◽  
Author(s):  
Xin Cui ◽  
Yuhui Wang ◽  
Lingjun Meng ◽  
Weihua Fei ◽  
Jingna Deng ◽  
...  

Berardinelli-Seip congenital lipodystrophy type 2 (BSCL2) is a recessive disorder characterized by an almost complete loss of adipose tissue, insulin resistance, and fatty liver. BSCL2 is caused by loss-of-function mutations in the BSCL2/seipin gene, which encodes seipin. The essential role for seipin in adipogenesis has recently been established both in vitro and in vivo. However, seipin is highly upregulated at later stages of adipocyte development, and its role in mature adipocytes remains to be elucidated. We therefore generated transgenic mice overexpressing a short isoform of human BSCL2 gene (encoding 398 amino acids) using the adipocyte-specific aP2 promoter. The transgenic mice produced ∼150% more seipin than littermate controls in white adipose tissue. Surprisingly, the increased expression of seipin markedly reduced the mass of white adipose tissue and the size of adipocytes and lipid droplets. This may be due in part to elevated lipolysis rates in the transgenic mice. Moreover, there was a nearly 50% increase in the triacylglycerol content of transgenic liver. These results suggest that seipin promotes the differentiation of preadipocytes but may inhibit lipid storage in mature adipocytes.


2016 ◽  
Vol 310 (1) ◽  
pp. R55-R65 ◽  
Author(s):  
Yun-Hee Lee ◽  
Sang-Nam Kim ◽  
Hyun-Jung Kwon ◽  
Krishna Rao Maddipati ◽  
James G. Granneman

De novo brown adipogenesis involves the proliferation and differentiation of progenitors, yet the mechanisms that guide these events in vivo are poorly understood. We previously demonstrated that treatment with a β3-adrenergic receptor (ADRB3) agonist triggers brown/beige adipogenesis in gonadal white adipose tissue following adipocyte death and clearance by tissue macrophages. The close physical relationship between adipocyte progenitors and tissue macrophages suggested that the macrophages that clear dying adipocytes might generate proadipogenic factors. Flow cytometric analysis of macrophages from mice treated with CL 316,243 identified a subpopulation that contained elevated lipid and expressed CD44. Lipidomic analysis of fluorescence-activated cell sorting-isolated macrophages demonstrated that CD44+ macrophages contained four- to five-fold higher levels of the endogenous peroxisome-proliferator activated receptor gamma (PPARγ) ligands 9-hydroxyoctadecadienoic acid (HODE), and 13-HODE compared with CD44− macrophages. Gene expression profiling and immunohistochemistry demonstrated that ADRB3 agonist treatment upregulated expression of ALOX15, the lipoxygenase responsible for generating 9-HODE and 13-HODE. Using an in vitro model of adipocyte efferocytosis, we found that IL-4-primed tissue macrophages accumulated lipid from dying fat cells and upregulated expression of Alox15. Furthermore, treatment of differentiating adipocytes with 9-HODE and 13-HODE potentiated brown/beige adipogenesis. Collectively, these data indicate that noninflammatory removal of adipocyte remnants and coordinated generation of PPARγ ligands by M2 macrophages provides localized adipogenic signals to support de novo brown/beige adipogenesis.


2016 ◽  
Vol 36 (19) ◽  
pp. 2440-2450 ◽  
Author(s):  
Yaohua Hu ◽  
William G. Robichaux ◽  
Fang C. Mei ◽  
Eun Ran Kim ◽  
Hui Wang ◽  
...  

Epacs (exchange proteins directly activated by cyclic AMP [cAMP]) act as downstream effectors of cAMP and play important roles in energy balance and glucose homeostasis. While global deletion of Epac1 in mice leads to heightened leptin sensitivity in the hypothalamus and partial protection against high-fat diet (HFD)-induced obesity, the physiological functions of Epac1 in white adipose tissue (WAT) has not been explored. Here, we report that adipose tissue-specific Epac1 knockout (AEKO) mice are more prone to HFD-induced obesity, with increased food intake, reduced energy expenditure, and impaired glucose tolerance. Despite the fact that AEKO mice on HFD display increased body weight, these mice have decreased circulating leptin levels compared to their wild-type littermates.In vivoandin vitroanalyses further reveal that suppression of Epac1 in WAT decreases leptin mRNA expression and secretion by inhibiting cAMP response element binding (CREB) protein and AKT phosphorylation, respectively. Taken together, our results demonstrate that Epac1 plays an important role in regulating energy balance and glucose homeostasis by promoting leptin expression and secretion in WAT.


2021 ◽  
Vol 48 (4) ◽  
pp. 440-447
Author(s):  
Kento Takaya ◽  
Naruhito Matsuda ◽  
Toru Asou ◽  
Kazuo Kishi

Background Brown adipose tissue (BAT) is a potential target for anti-obesity treatments. Previous studies have shown that BAT activation causes an acute metabolic boost and reduces adiposity. Furthermore, BAT and BAT-derived cell transplantation reportedly help treat obesity by regulating glucose and fatty acid metabolism. However, since BAT transplantation leads to whole-body weight loss, we speculated that earlier approaches cause a generalized and unnecessary fat tissue loss, including in breast and hip tissues.Methods We transplanted white adipose tissue-derived or BAT-derived preadipocytes prepared from C57BL/6 mice into one side of the inguinal fat pads of an obese mouse model (db/ db mice) to examine whether it would cause fat loss at the peri-transplant site (n=5 each). The same volume of phosphate-buffered saline was injected as a control on the other side. Six weeks after transplantation, the inguinal fat pad was excised and weighed. We also measured the concentrations of glucose, triglycerides, fatty acids, and total cholesterol in the peripheral blood.Results BAT-derived preadipocytes showed abundant mitochondria and high levels of mitochondrial membrane uncoupling protein 1 expression, both in vivo and in vitro, with a remarkable reduction in weight of the inguinal fat pad after transplantation (0.17±0.12 g, P=0.043). Only free fatty acid levels tended to decrease in the BAT-transplanted group, but the difference was not significant (P=0.11).Conclusions Our results suggest that brown adipocytes drive fat degradation around the transplantation site. Thus, local transplantation of BAT-derived preadipocytes may be useful for treating obesity, as well as in cosmetic treatments.


Author(s):  
Baskaran Thyagarajan ◽  
Michelle T. Foster

AbstractAn imbalance between energy intake and expenditure leads to obesity. Adiposity associated with obesity progressively causes inflammation, type 2 diabetes, hypertension, hyperlipidemia and cardiovascular disease. Excessive dietary intake of fat results in its accumulation and storage in the white adipose tissue (WAT), whereas energy expenditure by fat utilization and oxidation predominately occurs in the brown adipose tissue (BAT). Recently, the presence of a third type of fat, referred to as beige or brite (brown in white), has been recognized in certain kinds of WAT depots. It has been suggested that WAT can undergo the process of browning in response to stimuli that induce and enhance the expression of thermogenes characteristic of those typically associated with brown fat. The resultant beige or brite cells enhance energy expenditure by reducing lipids stored within adipose tissue. This has created significant excitement towards the development of a promising strategy to induce browning/beiging in WAT to combat the growing epidemic of obesity. This review systematically describes differential locations and functions of WAT and BAT, mechanisms of beiging of WAT and a concise analysis of drug molecules and natural products that activate the browning phenomenon in vitro and in vivo. This review also discusses potential approaches for targeting WAT with compounds for site-specific beiging induction. Overall, there are numerous mechanisms that govern browning of WAT. There are a variety of newly identified targets whereby potential molecules can promote beiging of WAT and thereby combat obesity.


2012 ◽  
Vol 303 (5) ◽  
pp. E597-E606 ◽  
Author(s):  
Agnieszka Gornicka ◽  
Jade Fettig ◽  
Akiko Eguchi ◽  
Michael P. Berk ◽  
Samjhana Thapaliya ◽  
...  

Obesity in both humans and rodents is characterized by adipocyte hypertrophy and the presence of death adipocytes surrounded by macrophages forming “crown-like structures.” However, the biochemical pathways involved in triggering adipocyte death as well as the role of death adipocytes in adipose tissue remodeling and macrophage infiltration remain poorly understood. We now show that induction of adipocyte hypertrophy by incubation of mature adipocytes with saturated fatty acids results in lysosomal destabilization and cathepsin B (ctsb), a key lysosomal cysteine protease, activation and redistribution into the cytosol. ctsb activation was required for the lysosomal permeabilization, and its inhibition protected cells against mitochondrial dysfunction. With the use of a dietary murine model of obesity, ctsb activation was detected in adipose tissue of these mice. This is an early event during weight gain that correlates with the presence of death adipocytes, and precedes macrophage infiltration of adipose tissue. Moreover, ctsb-deficient mice showed decreased lysosomal permeabilization in adipocytes and were protected against adipocyte cell death and macrophage infiltration to adipose tissue independent of body weight. These data strongly suggest that ctsb activation and lysosomal permeabilization in adipocytes are key initial events that contribute to the adipocyte cell death and macrophage infiltration into adipose tissue associated with obesity. Inhibition of ctsb activation may be a new therapeutic strategy for the treatment of obesity-associated metabolic complications.


Sign in / Sign up

Export Citation Format

Share Document