scholarly journals Prostaglandin E2 inhibits phosphoinositide metabolism in isolated pancreatic islets

1989 ◽  
Vol 260 (1) ◽  
pp. 291-294 ◽  
Author(s):  
S G Laychock

Isolated islets of the rat labelled with myo-[3H]inositol showed decreased accumulation of total inositol phosphates (InsPs) and [3H]polyphosphoinositide hydrolysis in response to glucose after preincubation with prostaglandin E2 (PGE2). The response was concentration-dependent and specific for PGE2. PGE2 did not affect basal [3H]phosphoinositide hydrolysis or InsPs accumulation. Pertussis-toxin pretreatment antagonized the response to PGE2, whereas 8-bromo cyclic AMP was without effect. The PGE2-induced decrease in InsPs may contribute to the suppression of insulin secretion.

2007 ◽  
Vol 192 (2) ◽  
pp. 389-394 ◽  
Author(s):  
Nguyen Khanh Hoa ◽  
Åke Norberg ◽  
Rannar Sillard ◽  
Dao Van Phan ◽  
Nguyen Duy Thuan ◽  
...  

We recently showed that phanoside, a gypenoside isolated from the plant Gynostemma pentaphyllum, stimulates insulin secretion from rat pancreatic islets. To study the mechanisms by which phanoside stimulates insulin secretion. Isolated pancreatic islets of normal Wistar (W) rats and spontaneously diabetic Goto-Kakizaki (GK) rats were batch incubated or perifused. At both 3.3 and 16.7 mM glucose, phanoside stimulated insulin secretion several fold in both W and diabetic GK rat islets. In perifusion of W islets, phanoside (75 and 150 μM) dose dependently increased insulin secretion that returned to basal levels when phanoside was omitted. When W rat islets were incubated at 3.3 mM glucose with 150 μM phanoside and 0.25 mM diazoxide to keep K-ATP channels open, insulin secretion was similar to that in islets incubated in 150 μM phanoside alone. At 16.7 mM glucose, phanoside-stimulated insulin secretion was reduced in the presence of 0.25 mM diazoxide (P<0.01). In W islets depolarized by 50 mM KCl and with diazoxide, phanoside stimulated insulin release twofold at 3.3 mM glucose but did not further increase the release at 16.7 mM glucose. When using nimodipine to block L-type Ca2+ channels in B-cells, phanoside-induced insulin secretion was unaffected at 3.3 mM glucose but decreased at 16.7 mM glucose (P<0.01). Pretreatment of islets with pertussis toxin to inhibit exocytotic Ge-protein did not affect insulin response to 150 μM phanoside. Phanoside stimulated insulin secretion from Wand GK rat islets. This effect seems to be exerted distal to K-ATP channels and L-type Ca2+ channels, which is on the exocytotic machinery of the B-cells.


2000 ◽  
Vol 78 (6) ◽  
pp. 462-468 ◽  
Author(s):  
José Roberto Bosqueiro ◽  
Everardo Magalhães Carneiro ◽  
Silvana Bordin ◽  
Antonio Carlos Boschero

The effect of tetracaine on 45Ca efflux, cytoplasmic Ca2+ concentration [Ca2+]i, and insulin secretion in isolated pancreatic islets and β-cells was studied. In the absence of external Ca2+, tetracaine (0.1-2.0 mM) increased the 45Ca efflux from isolated islets in a dose-dependant manner. Tetracaine did not affect the increase in 45Ca efflux caused by 50 mM K+ or by the association of carbachol (0.2 mM) and 50 mM K+. Tetracaine permanently increased the [Ca2+]i in isolated β-cells in Ca2+-free medium enriched with 2.8 mM glucose and 25 µM D-600 (methoxiverapamil). This effect was also observed in the presence of 10 mM caffeine or 1 µM thapsigargin. In the presence of 16.7 mM glucose, tetracaine transiently increased the insulin secretion from islets perfused in the absence and presence of external Ca2+. These data indicate that tetracaine mobilises Ca2+ from a thapsigargin-insensitive store and stimulates insulin secretion in the absence of extracellular Ca2+. The increase in 45Ca efflux caused by high concentrations of K+ and by carbachol indicates that tetracaine did not interfere with a cation or inositol triphosphate sensitive Ca2+ pool in β-cells.


1989 ◽  
Vol 257 (6) ◽  
pp. G865-G870
Author(s):  
J. Florholmen ◽  
D. Malm ◽  
B. Vonen ◽  
P. G. Burhol

Sulfated cholecystokinin octapeptide (CCK-8S) potentiated glucose-induced secretion in isolated pancreatic islets with a maximal effect at 12 mM glucose, whereas no effect was observed at 3.3 and 25 mM glucose. This effect of CCK-8S was maximal at 10(-7) M. Anion-exchange fast-protein liquid chromatography analysis of [3H]inositol phosphates derived from islets prelabeled with myo-[3H]inositol showed that glucose induced accumulation of the 1,4,5-isomer of inositol trisphosphate and of inositol tetrakisphosphate. At 3.3 mM glucose, CCK-8S stimulated accumulation of inositol trisphosphate and inositol tetrakisphosphate to levels induced by 25 mM glucose alone. The net effect of CCK-8S on the accumulation of the inositol phosphates was maximal at 12 mM glucose and decreased at higher glucose concentrations. At 12 mM glucose the accumulation of inositol phosphates increased gradually up to 10(-7) M CCK-8S. This study indicates that CCK-8S potentiates glucose-induced insulin secretion through a mechanism involving the hydrolysis of polyphosphoinositides and the generation of inositol phosphates. However, activation of the inositol cycle per se did not seem to induce insulin secretion.


1994 ◽  
Vol 131 (2) ◽  
pp. 201-204 ◽  
Author(s):  
Claes-Göran Östenson ◽  
Bo Ahrén ◽  
Sven Karlsson ◽  
Jens Knudsen ◽  
Suad Efendic

Östenson C-G, Ahrén B, Karlsson S, Knudsen J, Efendic S. Inhibition by rat diazepam-binding inhibitor/ acyl-CoA-binding protein of glucose-induced insulin secretion in the rat. Eur J Endocrinol 1994;131:201–4. ISSN 0804–4643 Diazepam-binding inhibitor (DBI) has been localized immunohistochemically in many organs. In porcine and rat pancreas, DBI is present in non-B-cells of the pancreatic islets. Porcine peptide also has been shown to suppress insulin secretion from rat pancreas in vitro. Recently, acyl-CoA-binding protein (ACBP) was isolated from rat liver and shown to be identical structurally to DBI isolated from rat brain. Using this rat DBI/ACBP, we have studied its effects on glucose-stimulated insulin secretion in the rat, both in vivo and in isolated pancreatic islets. Infusion iv of rDBI/ACBP (25 pmol/min) during glucose stimulation induced a moderate and transient reduction of plasma insulin levels. Moreover, rDBI/ACBP suppressed insulin release from batch-incubated isolated islets, stimulated by 16.7 mmol/l glucose, by 24% at 10 nmol/l (p < 0.05) and by 40% at 100 nmol/l (p < 0.01). The peptide (100 nmol/l) also inhibited the insulin response to glucose (16.7 mmol/l) from perifused rat islets by 31% (p < 0.05), mainly by affecting the acute-phase response. Finally, incubation of isolated islets in the presence of rDBI/ACBP antiserum (diluted 1:100 and 1:300) augmented the insulin response to 16.7 mmol/l glucose (p < 0.05 or even less). We conclude that rDBI/ACBP, administered iv or added to the incubation media, suppresses insulin secretion in the rat but that the effect is moderate despite the high concentration used. It is therefore unlikely that the peptide modulates islet hormone release, acting as a classical hormone via the circulation. However, the occurrence of DBI/ACBP in the islets and the enhancing effect by the rDBI/ACBP antibodies on glucose-stimulated insulin release suggest that the peptide is a local modulator of insulin secretion. C-G Östenson, Department of Endocrinology, Karolinska Hospital, S-171 76 Stockholm, Sweden


1987 ◽  
Vol 247 (3) ◽  
pp. 793-796 ◽  
Author(s):  
J R Hepler ◽  
A R Hughes ◽  
T K Harden

The relative capacities of muscarinic cholinergic receptor (MR) and bradykinin (BK)-receptor activation to increase phosphoinositide hydrolysis and to increase cytosolic Ca2+ were compared in NG108-15 neuroblastoma x glioma and 1321N1 human astrocytoma cells. In 1321N1 cells, the muscarinic cholinergic agonist carbachol and BK each stimulated a concentration-dependent accumulation of inositol phosphates (K0.5 approximately 10 microM and approximately 10 nM respectively) and a rapid increase in cytosolic Ca2+ as determined by quin2 fluorescence. In NG108-15 cells, BK alone stimulated a pertussis-toxin-insensitive accumulation of inositol phosphates (K0.5 approximately 10 nM) under conditions in which pertussis toxin completely inhibited MR-mediated inhibition of adenylate cyclase. BK also stimulated a rapid increase in cytosolic Ca2+ in NG108-15 cells. In contrast, no MR-mediated increase in phosphoinositide hydrolysis or change in cytosolic Ca2+ concentration was observed in NG108-15 cells. These results support the idea that MR selectively interact with either the cyclic AMP or the inositol phosphate second-messenger systems.


Hypertension ◽  
2013 ◽  
Vol 62 (suppl_1) ◽  
Author(s):  
Robin C Shoemaker ◽  
Lisa A Cassis

Objective: Diet-induced obesity promotes type 2 diabetes (T2D). Drugs that inhibit the renin-angiotensin system (RAS) have been demonstrated in clinical trials to decrease the onset of T2D. Angiotensin converting enzyme 2 (ACE2) negatively regulates the RAS by catabolizing angiotensin II (AngII). Preliminary data indicate that ACE2 deficient mice display impairments in glucose homeostasis at 8 weeks of age. We tested the hypothesis that ACE2 deficiency promotes the development of glucose intolerance and β-cell dysfunction in mice with diet-induced obesity. Methods and Results: Male Ace2 +/y or -/y mice were fed a low fat (LF, 10% kcal as fat) or high fat (HF, 60% kcal as fat) diet for 5 or 17 weeks. After 5 weeks, plasma insulin concentrations (0, 30 min) following a glucose challenge were significantly greater in HF versus ( vs) LF-fed mice. However, glucose-stimulated increases in plasma insulin concentrations were decreased in HF-fed ACE2 deficient mice compared to controls (2.96 ± 0.18 vs 4.44 ± 0.40 ng/ul, respectively; P<0.01). Surprisingly, isolated pancreatic islets from HF-fed mice of either genotype released similar concentrations of insulin in response to glucose. However, mRNA abundance of insulin was significantly reduced in islets from HF-fed Ace2 -/y compared to +/y mice (1.76 ± 0.17 vs 2.54 ± 0.18 insulin/18S ratio; P<0.05). After 17 weeks, the plasma insulin response to glucose was further reduced in the HF-fed ACE2 deficient mice compared to controls (8.07 ± 0.98 vs 13.90 ± 1.10 ng/ul; P<0.01). Further, LF-fed ACE2 deficient mice also displayed reductions in plasma glucose-stimulated insulin concentrations (1.92 ± 0.98 vs 3.09 ± 0.98 ng/ul; P<0.01). Islets from HF-fed wild type mice displayed reduced ACE2 gene expression compared to LF (0.069 ± 0.009 vs 0.169 ± 0.01, ACE2/18S ratio; P<0.001) and AngII totally suppressed islet glucose-stimulated insulin secretion compared to vehicle (-0.16 ± 0.18 vs 0.9 ± 0.26, fold change over basal; P<0.05). Conclusions: These results demonstrate that ACE2 deficiency promotes the development of T2D by regulating islet insulin content. Moreover, diet-induced obesity reduces islet ACE2 gene expression with augmented AngII-induced impairment of insulin secretion.


1996 ◽  
Vol 271 (1) ◽  
pp. E85-E95 ◽  
Author(s):  
J. Vadakekalam ◽  
M. E. Rabaglia ◽  
Q. H. Chen ◽  
S. A. Metz

We have previously demonstrated a permissive role for GTP in insulin secretion; in the current studies, we examined the effect of GTP on phospholipase C (PLC) activation to explore one possible mechanism for that observation. In rat islets preexposed to the GTP synthesis inhibitors mycophenolic acid (MPA) or mizoribine (MZ), PLC activation induced by 16.7 mM glucose (or by 20 mM alpha-ketoisocaproic acid) was inhibited 63% without altering the labeling of phosphoinositide substrates. Provision of guanine, which normalizes islet GTP content and insulin release, prevented the inhibition of PLC by MPA. Glucose-induced phosphoinositide hydrolysis was blocked by removal of extracellular Ca2+ or by diazoxide. PLC induced directly by Ca2+ influx (i.e., 40 mM K+) was reduced 42% in MPA-pretreated islets but without inhibition of the concomitant insulin release. These data indicate that glucose-induced PLC activation largely reflects Ca2+ entry and demonstrate (for the first time in intact cells) that adequate GTP is necessary for glucose (and Ca(2+)-)-induced PLC activation but not for maximal Ca(2+)-induced exocytosis.


1988 ◽  
Vol 249 (3) ◽  
pp. 917-920 ◽  
Author(s):  
C W Taylor ◽  
D M Blakeley ◽  
A N Corps ◽  
M J Berridge ◽  
K D Brown

We have compared the effects of pretreatment of Swiss 3T3 cell with pertussis toxin on the stimulation of DNA synthesis and phosphoinositide hydrolysis in response to a wide variety of mitogens. The toxin substantially inhibited the stimulation of DNA synthesis in response to a phorbol ester or various peptide and polypeptide growth factors irrespective of their ability to activate phosphoinositidase C. Production of inositol phosphates in response to platelet-derived growth factor, fibroblast growth factor and prostaglandin F2 alpha were unaffected by the toxin while bombesin- and vasopressin-stimulated formation of inositol phosphates were inhibited by only 27 and 23% respectively. These results argue against a major role for a pertussis toxin-sensitive G protein in coupling any of these mitogen receptors to activation of a phosphoinositidase C. Furthermore, the results suggest that the widespread inhibitory effects of pertussis toxin on mitogen-stimulated DNA synthesis may be unrelated to the toxin's limited actions on phosphoinositide hydrolysis.


1992 ◽  
Vol 262 (2) ◽  
pp. F256-F266 ◽  
Author(s):  
P. Meneton ◽  
M. Bloch-Faure ◽  
G. Guillon ◽  
D. Chabardes ◽  
F. Morel ◽  
...  

Cholinergic effects on kidney function have been observed in some mammals but the intrarenal localization and the cellular mechanisms of these effects are poorly defined to date. The aim of this work was to study the effects of carbachol on phosphoinositide metabolism in freshly isolated rat glomeruli labeled with myo-[3H]inositol. Carbachol rapidly and markedly stimulates phosphoinositide metabolism with a 50% effective concentration of 3 microM. The enormous magnitude of the response is enlightened by the use of 10 mM lithium, which provokes in the presence of the agonist a large accumulation of inositol phosphates and a corresponding depletion of cellular free inositol. The response is inhibited by 85% by pirenzepine, is pertussis toxin insensitive, and shows no desensitization at maximum dose of carbachol up to 40 min of stimulation.


Sign in / Sign up

Export Citation Format

Share Document