scholarly journals Identification and characterization of glycoproteins after extraction of bovine chromaffin-granule membranes with lithium di-iodosalicylate. Purification of glycoprotein II from the soluble fraction

1990 ◽  
Vol 270 (1) ◽  
pp. 57-61 ◽  
Author(s):  
D L Christie ◽  
D J Palmer

Chromaffin-granule membranes were separated into insoluble and soluble fractions after extraction with lithium di-iodosalicylate (LDIS). These fractions were characterized by one- and two-dimensional gel electrophoresis, and glycoproteins were detected after electroblotting with peroxidase-labelled concanavalin A and wheat-germ agglutinin (WGA). The LDIS-insoluble fraction contained components identified as glycoproteins III, H, J and K (carboxypeptidase H). Microsequence analysis indicated that component J is an N-terminally extended form of glycoprotein K. A major glycoprotein, GpII (Mr 80,000-100,000), present in the LDIS-soluble fraction was purified by affinity chromatography on WGA-Sepharose. This was characterized by one- and two-dimensional gel electrophoresis with Coomassie Blue staining, by amino acid analysis and automated N-terminal sequence analysis. Extraction of chromaffin-granule membranes with LDIS is a simple and rapid procedure that facilitates studies concerned with the structure and function of membrane glycoproteins from these and other secretory granules.

1984 ◽  
Vol 99 (3) ◽  
pp. 962-970 ◽  
Author(s):  
J L Salisbury ◽  
A Baron ◽  
B Surek ◽  
M Melkonian

We report the isolation of striated flagellar roots from the Prasinophycean green alga Tetraselmis striata using sedimentation in gradients of sucrose and flotation on gradients of colloidal silica. PAGE in the presence of 0.1% SDS demonstrates that striated flagellar roots are composed of a number of polypeptides, the most predominant one being a protein of 20,000 Mr. The 20,000 Mr protein band represents approximately 63% of the Coomassie Brilliant Blue staining of gels of isolated flagellar roots. Two-dimensional gel electrophoresis (isoelectric focusing and SDS PAGE) resolves the major 20,000 Mr flagellar root protein into two components of nearly identical Mr, but of differing isoelectric points (i.e., pl's of 4.9 and 4.8), which we have designated 20,000-Mr-alpha and 20,000-Mr-beta, respectively. Densitometric scans of two-dimensional gels of cell extracts indicate that the 20,000-Mr-alpha and -beta polypeptides vary, in their stoichiometry, between 2:1 and 1:1. This variability appears to be related to the state of contraction or extension of the striated flagellar roots at the time of cell lysis. Incubation of cells with 32PO4 followed by analysis of cell extracts by two-dimensional gel electrophoresis and autoradiography reveals that the more acidic 20,000-Mr-beta component is phosphorylated and the 20,000-Mr-alpha component contains no detectable label. These results suggest that the 20,000-Mr-alpha component is converted to the more acidic 20,000-Mr-beta form by phosphorylation. Both the 20,000-Mr-alpha and -beta flagellar root components exhibit a calcium-induced reduction in relative electrophoretic mobilities in two-dimensional alkaline urea gels. Antiserum raised in rabbits against the 20,000-Mr protein binds to both the 20,000-Mr-alpha and 20,000-Mr-beta forms of the flagellar root protein when analyzed by electrophoretic immunoblot techniques. Indirect immunofluorescence on vegetative or interphase cells demonstrate that the antibodies bind to two cyclindrical organelles located in the anterior region of the cell. Immunocytochemical investigations at ultrastructural resolution using this antiserum and a colloidal gold-conjugated antirabbit-IgG reveals immunospecific labeling of striated flagellar roots and their extensions. We conclude that striated flagellar roots are simple ion-sensitive contractile organelles composed predominantly of a 20,000 Mr calcium-binding phosphoprotein, and that this protein is largely responsible for the motile behavior of these organelles.


1985 ◽  
Vol 161 (5) ◽  
pp. 972-983 ◽  
Author(s):  
K J Clemetson ◽  
J L McGregor ◽  
R P McEver ◽  
Y V Jacques ◽  
D F Bainton ◽  
...  

Two-dimensional gel electrophoresis, immunoprecipitation, and crossed immunoelectrophoresis were used in the investigation of glycoproteins IIb/IIIa in platelets, monocytes, and monocyte-derived macrophages from human blood. All techniques detected the glycoproteins in platelets but not in the mononuclear phagocytes. Similar results were obtained by immunochemistry using a monoclonal antibody against the platelet glycoproteins IIb/IIIa (revealed by a gold-labeled second antibody) which bound heavily to the platelet but not to the monocyte surface. The biochemical techniques used for the analysis of mononuclear phagocytes would have reliably detected the level of glycoproteins IIb/IIIa contributed by a 5% contamination with platelets, calculated on a per cell basis. We conclude that human monocytes and monocyte-derived macrophages lack glycoproteins IIb/IIIa. Our results further indicate that centrifugal elutriation yields monocyte preparations with minimal contamination by platelets. It seems likely that the positive results obtained by other authors were due to the presence of platelets or fragments on the monocytes.


1983 ◽  
Vol 96 (6) ◽  
pp. 1803-1808 ◽  
Author(s):  
I Blikstad ◽  
E Lazarides

The synthesis and assembly of vimentin was studied in erythroid cells from 10-d-old chicken embryos. After various periods of [35S]methionine incorporation, cells were lysed in a Triton X-100-containing buffer and separated into a soluble and an insoluble (cytoskeletal) fraction. Analysis of these two fractions by two-dimensional gel electrophoresis shows that vimentin is almost exclusively present in the cytoskeletal fraction and that newly synthesized vimentin is rapidly incorporated into this fraction. However, after a short pulse-labeling period, a prominent labeled protein at the position of vimentin is present in the soluble fraction. By immunoautoradiography and immunoprecipitations with vimentin antibodies, this protein was identified as vimentin. The vimentin in the soluble fraction is not sedimented by high speed centrifugation, suggesting that it does not consist of short filaments. After different pulse-labeling periods, assembly of newly synthesized vimentin in the cytoskeletal fraction increases linearly, while the radioactivity in the soluble vimentin remains constant. During a 2-h pulse-chase period, the vimentin in the soluble fraction is chased into the cytoskeletal fraction, with a half-life of 7 min. These results suggest that in chicken embryo erythroid cells newly synthesized vimentin is rapidly assembled into filaments from a soluble precursor.


1985 ◽  
Vol 54 (03) ◽  
pp. 626-629 ◽  
Author(s):  
M Meyer ◽  
F H Herrmann

SummaryThe platelet proteins of 9 thrombasthenic patients from 7 families were analysed by high resolution two-dimensional gel electrophoresis (HR-2DE) and crossed immunoelectrophoresis (CIE). In 7 patients both glycoproteins (GPs) IIb and Ilia were absent or reduced to roughly the same extent. In two related patients only a trace of GP Ilb-IIIa complex was detected in CIE, but HR-2DE revealed a glycopeptide in the position of GP Ilia in an amount comparable to type II thrombasthenia. This GP Ilia-like component was neither recognized normally by anti-GP Ilb-IIIa antibodies nor labeled by surface iodination. In unreduced-reduced two-dimensional gel electrophoresis two components were observed in the region of GP Ilia. The assumption of a structural variant of GP Ilia in the two related patients is discussed.


2015 ◽  
Vol 22 (12) ◽  
pp. 1066-1075 ◽  
Author(s):  
Adriana Magalhães ◽  
Rayner Queiroz ◽  
Izabela Bastos ◽  
Jaime Santana ◽  
Marcelo Sousa ◽  
...  

Author(s):  
Fatemeh Nasri ◽  
Maryam Zare ◽  
Mehrnoosh Doroudchi ◽  
Behrouz Gharesi-Fard

Background: Polycystic ovary syndrome (PCOS) is the most frequent endocrine disorder affecting 6–7% of premenopausal women. Recent studies revealed that the immune system especially CD4+ T helper cells are important in the context PCOS. Proteome analysis of CD4+ T lymphocytes can provide valuable information regarding the biology of these cells in the context of PCOS. Objective: To investigate immune dysregulation in CD4+ T lymphocytes at the protein level in the context of PCOS using two-dimensional gel electrophoresis (2DE) and mass spectrometry (MS). Methods: In the present study, we applied two-dimensional gel electrophoresis / mass spectrometry to identify proteins differentially expressed by peripheral blood CD4+ T cells in ten PCOS women compared with ten healthy women. Western blot technique was used to confirm the identified proteins. Results: Despite the overall proteome similarities, there were significant differences in the expression of seven spots between two groups (P <0.05). Three proteins, namely phosphatidylethanolamine-binding protein 1, proteasome activator complex subunit 1 and triosephosphate isomerase 1 were successfully identified by Mass technique and confirmed by western blot. All characterized proteins were over-expressed in CD4+ T cells from patients compared to CD4+ T cells from controls (P <0.05). In-silico analysis suggested that the over-expressed proteins interact with other proteins involved in cellular metabolism especially glycolysis and ferroptosis pathway. Conclusion: These findings suggest that metabolic adjustments in CD4+ T lymphocytes, which is in favor of increased glycolysis and Th2 differentiation are important in the context of PCOS.


Sign in / Sign up

Export Citation Format

Share Document