scholarly journals Low-Mr heparin is as potent as conventional heparin in releasing lipoprotein lipase, but is less effective in preventing hepatic clearance of the enzyme

1991 ◽  
Vol 273 (3) ◽  
pp. 747-752 ◽  
Author(s):  
G Q Liu ◽  
G Bengtsson-Olivecrona ◽  
P Ostergaard ◽  
T Olivecrona

This study compares a low-Mr heparin preparation with conventional heparin with respect to its interaction with lipoprotein lipase (LPL) in vitro and its effects on the enzyme in vivo. Both heparin preparations were polydisperse in binding to LPL, but on average the low-Mr preparation showed lower affinity. Thus both conventional and low-Mr heparin bound quantitatively to immobilized LPL, and were eluted as broad peaks when a salt gradient was applied, but the peak for low-Mr heparin was shifted towards lower salt concentrations. To displace LPL from immobilized heparin a higher concentration of low-Mr than of conventional heparin was needed. Injection of the low-Mr heparin into intact rats resulted in lower plasma LPL activity than did injection of an equal mass of conventional heparin, but when the liver was excluded from the circulation both heparin preparations resulted in similar plasma LPL activities. In perfused rat hearts, low-Mr heparin had at least the same effect on the release of LPL activity as did conventional heparin. In perfused livers, on the other hand, low-Mr heparin was less effective than conventional heparin in preventing the rapid uptake of exogenous labelled LPL. Hence the apparently lower average affinity of low-Mr heparin for LPL does not result in a demonstrably lower potency to release the enzyme from endothelial binding sites in peripheral tissues, but does result in a substantially decreased effect on the hepatic clearance of the enzyme.

1985 ◽  
Vol 225 (2) ◽  
pp. 487-492 ◽  
Author(s):  
V R Preedy ◽  
D M Smith ◽  
N F Kearney ◽  
P H Sugden

In vivo, fractional rates of protein synthesis in atrial muscle of hearts taken from fed rats were 70% greater than in ventricular muscle. After 3 days starvation, atrial protein synthesis is inhibited, but the inhibition is less than in ventricles. A crude subcellular fractionation of the aqueous homogenates by centrifugation at 32000g showed that the supernatant and precipitate proteins were synthesized at the same rate in the ventricles. The fractional rates of protein synthesis and RNA/protein ratios in the right ventricle were 10% greater than in the left ventricle. Protein synthesis in both of these regions was inhibited equally by starvation. In vitro, rates of protein synthesis in atria and ventricles of anterogradely perfused rat hearts were stimulated by saturating insulin concentrations and were inhibited by starvation, but the effects in atria were smaller than in ventricles. Rates of protein synthesis in atria in vitro were 80-95% of rates in vivo. The heart therefore shows considerable regional variation in rates of protein synthesis in vivo and in vitro, and the sensitivity of protein synthesis in the various regions to interventions such as insulin and starvation differs.


1976 ◽  
Vol 156 (3) ◽  
pp. 539-543 ◽  
Author(s):  
J Borensztajn ◽  
M S Rone ◽  
T J Kotlar

1. Lipoprotein lipase activity was measured in heart homogenates and in heparin-releasable and non-releasable fractions of isolated perfused rat hearts, after the intravenous injection of Triton WR-1339. 2. In homogenates of hearts from starved, rats, lipoprotein lipase activity was significantly inhibited (P less than 0.001) 2h after the injection of Triton. This inhibition was restricted exclusively to the heparin-releasable fraction. Maximum inhibition occurred 30 min after the injection and corresponded to about 60% of the lipoprotein lipase activity that could be released from the heart during 30 s perfusion with heparin. 3. Hearts of Triton-treated starved rats were unable to take up and utilize 14C-labelled chylomicron triacylglycerol fatty acids, even though about 40% of heparin-releasable activity remained in the hearts. 4. It is concluded that Triton selectively inhibits the functional lipoprotein lipase, i.e. the enzyme directly involved in the hydrolysis of circulating plasma triacylglycerols. 5. Lipoprotein lipase activities measured in homogenates of soleus muscle of starved rats and adipose tissue of fed rats were decreased by 25 and 39% respectively after Triton injection. It is concluded that, by analogy with the heart, these Triton-inhibitable activities correspond to the functional lipoprotein lipase.


1992 ◽  
Vol 262 (5) ◽  
pp. E663-E670 ◽  
Author(s):  
J. E. Braun ◽  
D. L. Severson

Streptozotocin-induced diabetes reduced cellular lipoprotein lipase (LPL) activity in cardiac myocytes from rat hearts and decreased the heparin-induced release of LPL into the medium. This effect of diabetes was rapidly reversed by in vivo treatment with insulin (5 U iv for 1 h); administration of insulin in vivo to control rats also increased heparin-releasable LPL activity. In contrast, in vitro addition of insulin to control and diabetic myocytes did not alter either cellular or heparin-releasable LPL activities. Insulin stimulated glucose oxidation and protein synthesis in control and diabetic myocytes. Decavanadate (0.05-1 mM) or vanadyl ion (0.5 mM) enhanced the release of LPL into the medium. Heparin- and decavanadate-induced release of LPL was not additive, and heparin pretreatment reduced the subsequent release of LPL by decavanadate. Decavanadate displaced LPL bound to heparin-Sepharose and increased LPL release into the perfusate of hearts. Therefore, decavanadate can mimic heparin in its effect on LPL. The absence of a direct in vitro effect of insulin on LPL in cardiac myocytes suggests that insulin may require some other in vivo factor or that diabetes-induced changes in LPL activity are secondary to some other metabolic factor.


2002 ◽  
Vol 283 (4) ◽  
pp. H1489-H1496 ◽  
Author(s):  
Heike Degenhardt ◽  
Johanna Jansen ◽  
Rainer Schulz ◽  
Daniel Sedding ◽  
Ruediger Braun-Dullaeus ◽  
...  

10.1152/ajpheart.00925. 2001.—Parathyroid hormone-related peptide (PTHrP) is expressed throughout the cardiovascular system and is able to dilate vessels. This study investigated whether mechanical forces generated by changes in regional perfusion influence PTHrP release from the coronary vascular bed. Experiments were performed in vitro on saline-perfused rat hearts or isolated coronary endothelial cells exposed to cyclic strain and in vivo in anesthetized pigs. In vitro, PTHrP release from saline-perfused rat hearts was strongly correlated with coronary flow ( r = 0.84). Increasing coronary flow from 5 to 10 ml/min increased PTHrP release from 442 ± 42 to 1,563 ± 167 pg/min. Increasing the viscosity of the perfusate did not change basal PTHrP release. Increasing flow without a concomitant increase in pressure did not lead to an increase in release rate, but reduction in pressure under flow-constant conditions reduced PTHrP release rate. Cyclic strain induced a strain-dependent release of PTHrP from endothelial cells that was inhibited by the addition of a calcium-chelating agent. In vivo, there was a net release of PTHrP in the coronary circulation and decreases in coronary flow and pressure decreased the PTHrP release rate. Bradykinin in the presence of constant pressure increased PTHrP release, probably by increasing the intracellular calcium concentration in coronary endothelial cells. In summary, mechanical forces evoked by blood flow can trigger a constant PTHrP release.


1988 ◽  
Vol 66 (1) ◽  
pp. 13-19 ◽  
Author(s):  
R. William Currie

Isolated and perfused rat hearts can be maintained for up to 2.5 h with minimal synthesis of a stress protein with a relative mass (Mr) of 71 kilodaltons (SP71). Isolated hearts, subjected to 17 h of cold (4 °C) ischemia, upon perfusion (37 °C) synthesize a large amount of SP71. In the present study, the effect of in vivo hyperthermia on protein synthesis in isolated and perfused hearts was examined. Hearts were excised from rats subjected to a 15-min episode of hyperthermia (42 °C), either immediately (no recovery) or after 24 h of recovery. The excised hearts were perfused either immediately or after 17 h of cold ischemia. Hyperthermia (no recovery) increased [3H]leucine incorporation into SP71, while hyperthermia with a 24-h recovery did not increase incorporation into SP71 during perfusion (no ischemia). Hyperthermia (no recovery) increased the incorporation of [3H]leucine into SP71 seen after cold ischemia. Hyperthermia with a 24-h recovery decreased the incorporation of [3H]leucine into SP71 seen after cold ischemia. This reduction in synthesis of SP71 after 24-h recovery from hyperthermia could be caused by the accumulation of SP71 suppressing its own synthesis or a measure of protection (tolerance) induced by the hyperthermia.


1979 ◽  
Vol 41 (03) ◽  
pp. 576-582
Author(s):  
A R Pomeroy

SummaryThe limitations of currently used in vitro assays of heparin have demonstrated the need for an in vivo method suitable for routine use.The in vivo method which is described in this paper uses, for each heparin preparation, four groups of five mice which are injected intravenously with heparin according to a “2 and 2 dose assay” procedure. The method is relatively rapid, requiring 3 to 4 hours to test five heparin preparations against a standard preparation of heparin. Levels of accuracy and precision acceptable for the requirements of the British Pharmacopoeia are obtained by combining the results of 3 to 4 assays of a heparin preparation.The similarity of results obtained the in vivo method and the in vitro method of the British Pharmacopoeia for heparin preparations of lung and mucosal origin validates this in vivo method and, conversely, demonstrates that the in vitro method of the British Pharmacopoeia gives a reliable estimation of the in vivo activity of heparin.


1985 ◽  
Vol 05 (03) ◽  
pp. 121-126
Author(s):  
L. B. Jaques

ZusammenfassungIn vivo bewirkt Heparin das Auftreten einer Lipoprotein-Lipase, einer Diaminoxydase (Histaminase) und anderer Enzyme. In Tierversuchen konnten viele günstige Wirkungen von Heparin und Heparinoiden aufgezeigt werden, wie z.B. Schutzeffekte gegen toxische Medikamente und Prozeduren, gegen Überempfindlichkeitsreaktionen, Änderungen von Hormoneffekten und die Erhöhung der negativen elektrischen Ladung von Körperzellen. Die Einzelwirkungen sind für bestimmte Kettenstrukturen spezifisch. Während Heparin in vitro gerinnungshemmend wirksam ist, zeigt der Vergleich der gerinnungshemmenden Wirkung in der Blutzirkulation mit der chemischen Konzentration im Blut, daß in vivo eine Aktivierung von nicht gerinnungshemmend aktiven Fraktionen bzw. Heparinketten erfolgt. Heparin wird rasch von den Zellen des RES-Systems gegen einen Konzentrationsgradienten aufgenommen, so daß in vivo die Heparinkonzentration im Gefäßendothel lOOOfach höher ist als im Blut.Die Fixierung des Heparins im Endothel vermehrt das elektronegative Potential des Endothels. Diese Wirkung und andere Wirkungen (die Aktivierung von Antithrombin III etc.) sind lokal die Basis der thromboseverhütenden Heparinwirkung. Demnach ist das Endothel das Zielorgan für Heparin.


1981 ◽  
Vol 196 (1) ◽  
pp. 171-178 ◽  
Author(s):  
I A Bailey ◽  
S R Williams ◽  
G K Radda ◽  
D G Gadian

1. The uptake and subsequent phosphorylation of deoxyglucose into perfused rat hearts was monitored by 31P n.m.r. 2. The accumulated deoxyglucose 6-phosphate provided (a) an independent method for measuring cytosolic pH in the normoxic and ischaemic heart tissue and (b) a way of studying the activity of phosphorylase during ischaemia. 3. The cytosolic pH measured from the 31P n.m.r. resonance position of deoxyglucose 6-phosphate is in good agreement under all conditions studied with that obtained previously from the Pi resonances. This eliminates any possible doubts about the use of Pi for measuring intracellular pH. 4. Deoxyglucose 6-phosphate in vitro inhibits phosphorylase b but not phosphorylase a. Its inhibitory effect on glycogenolysis during ischaemia is monitored by measuring tissue acidosis by n.m.r. In the initial stages of ischaemia phosphorylase activity is not inhibited, whereas after about 5 min approx. 50% of the activity is inhibited. These observations are interpreted in terms of the relative contributions of phosphorylase a and the AMP-dependent phosphorylase b activities during ischaemia.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Patrizia Camelliti ◽  
Gil Bub ◽  
Daniel J Stuckey ◽  
Christian Bollensdorff ◽  
Damian J Tyler ◽  
...  

Sarcomere length (SL) is a fundamental parameter underlying the Frank Starling relation in the heart, as it offers an absolute representation of myocardial stretch. Previous studies addressed the Frank Starling relation by measuring SL in isolated myocytes or muscle strips. Here, we report first data obtained using a novel technique to measure sub-epicardial SL in perfused hearts. Rat hearts were Langendorff perfused (normal Tyrode solution) at a constant pressure of 90mmHg, labeled with the fluorescent membrane marker di-4-ANEPPS, and then arrested with high-K + Tyrode for either 2-photon microscopy (n=4) or MRI (n=4). Image analysis software was developed to extract SL at the cell level from >1,400 2-photon images (Fig 1 ) and correct for cell angle. SL increased by 10±2 % between 30 and 80 min of perfusion (1.98±0.04 to 2.17±0.03 μm; p<0.05; Fig 1 ). Measurements of left ventricular myocardial volume (LVMV) were made in vivo and in perfused hearts using 3D MRI. LVMV increased by 24±7% from in vivo to 30 min of perfusion, and by 11±3 % between 30 and 90 min (539±35; 664±44; 737±49 mm 3 , respectively; p<0.05; Fig 1 ). We show that SL can be measured in isolated perfused hearts. The method allowed monitoring of changes in SL over time, and showed that SL and LVMV increase to a similar extent during 30–80 min perfusion with crystalloid solution, probably due to tissue oedema. This result, together with the increase in LVMV during the first 30 min, highlights the pronounced differences between in vivo , in situ , and in vitro model systems for studies of cardiac physiology and mechanics. Future research will compare changes in SL in healthy hearts and disease models involving contractile dysfunction. Figure 1: Left: 2-photon microscopy image of di-4-ANEPPS labeled myocardium. Right: SL and LVMV changes over time.


Sign in / Sign up

Export Citation Format

Share Document