scholarly journals Regional variation and differential sensitivity of rat heart protein synthesis in vivo and in vitro

1985 ◽  
Vol 225 (2) ◽  
pp. 487-492 ◽  
Author(s):  
V R Preedy ◽  
D M Smith ◽  
N F Kearney ◽  
P H Sugden

In vivo, fractional rates of protein synthesis in atrial muscle of hearts taken from fed rats were 70% greater than in ventricular muscle. After 3 days starvation, atrial protein synthesis is inhibited, but the inhibition is less than in ventricles. A crude subcellular fractionation of the aqueous homogenates by centrifugation at 32000g showed that the supernatant and precipitate proteins were synthesized at the same rate in the ventricles. The fractional rates of protein synthesis and RNA/protein ratios in the right ventricle were 10% greater than in the left ventricle. Protein synthesis in both of these regions was inhibited equally by starvation. In vitro, rates of protein synthesis in atria and ventricles of anterogradely perfused rat hearts were stimulated by saturating insulin concentrations and were inhibited by starvation, but the effects in atria were smaller than in ventricles. Rates of protein synthesis in atria in vitro were 80-95% of rates in vivo. The heart therefore shows considerable regional variation in rates of protein synthesis in vivo and in vitro, and the sensitivity of protein synthesis in the various regions to interventions such as insulin and starvation differs.

1988 ◽  
Vol 66 (1) ◽  
pp. 13-19 ◽  
Author(s):  
R. William Currie

Isolated and perfused rat hearts can be maintained for up to 2.5 h with minimal synthesis of a stress protein with a relative mass (Mr) of 71 kilodaltons (SP71). Isolated hearts, subjected to 17 h of cold (4 °C) ischemia, upon perfusion (37 °C) synthesize a large amount of SP71. In the present study, the effect of in vivo hyperthermia on protein synthesis in isolated and perfused hearts was examined. Hearts were excised from rats subjected to a 15-min episode of hyperthermia (42 °C), either immediately (no recovery) or after 24 h of recovery. The excised hearts were perfused either immediately or after 17 h of cold ischemia. Hyperthermia (no recovery) increased [3H]leucine incorporation into SP71, while hyperthermia with a 24-h recovery did not increase incorporation into SP71 during perfusion (no ischemia). Hyperthermia (no recovery) increased the incorporation of [3H]leucine into SP71 seen after cold ischemia. Hyperthermia with a 24-h recovery decreased the incorporation of [3H]leucine into SP71 seen after cold ischemia. This reduction in synthesis of SP71 after 24-h recovery from hyperthermia could be caused by the accumulation of SP71 suppressing its own synthesis or a measure of protection (tolerance) induced by the hyperthermia.


1984 ◽  
Vol 222 (2) ◽  
pp. 395-400 ◽  
Author(s):  
V R Preedy ◽  
D M Smith ◽  
N F Kearney ◽  
P H Sugden

Starvation of 300 g rats for 3 days decreased ventricular-muscle total protein content and total RNA content by 15 and 22% respectively. Loss of body weight was about 15%. In glucose-perfused working rat hearts in vitro, 3 days of starvation inhibited rates of protein synthesis in ventricles by about 40-50% compared with fed controls. Although the RNA/protein ratio was decreased by about 10%, the major effect of starvation was to decrease the efficiency of protein synthesis (rate of protein synthesis relative to RNA). Insulin stimulated protein synthesis in ventricles of perfused hearts from fed rats by increasing the efficiency of protein synthesis. In vivo, protein-synthesis rates and efficiencies in ventricles from 3-day-starved rats were decreased by about 40% compared with fed controls. Protein-synthesis rates and efficiencies in ventricles from fed rats in vivo were similar to values in vitro when insulin was present in perfusates. In vivo, starvation increased the rate of protein degradation, but decreased it in the glucose-perfused heart in vitro. This contradiction can be rationalized when the effects of insulin are considered. Rates of protein degradation are similar in hearts of fed animals in vivo and in glucose/insulin-perfused hearts. Degradation rates are similar in hearts of starved animals in vivo and in hearts perfused with glucose alone. We conclude that the rates of protein turnover in the anterogradely perfused rat heart in vitro closely approximate to the rates in vivo in absolute terms, and that the effects of starvation in vivo are mirrored in vitro.


2002 ◽  
Vol 283 (4) ◽  
pp. H1489-H1496 ◽  
Author(s):  
Heike Degenhardt ◽  
Johanna Jansen ◽  
Rainer Schulz ◽  
Daniel Sedding ◽  
Ruediger Braun-Dullaeus ◽  
...  

10.1152/ajpheart.00925. 2001.—Parathyroid hormone-related peptide (PTHrP) is expressed throughout the cardiovascular system and is able to dilate vessels. This study investigated whether mechanical forces generated by changes in regional perfusion influence PTHrP release from the coronary vascular bed. Experiments were performed in vitro on saline-perfused rat hearts or isolated coronary endothelial cells exposed to cyclic strain and in vivo in anesthetized pigs. In vitro, PTHrP release from saline-perfused rat hearts was strongly correlated with coronary flow ( r = 0.84). Increasing coronary flow from 5 to 10 ml/min increased PTHrP release from 442 ± 42 to 1,563 ± 167 pg/min. Increasing the viscosity of the perfusate did not change basal PTHrP release. Increasing flow without a concomitant increase in pressure did not lead to an increase in release rate, but reduction in pressure under flow-constant conditions reduced PTHrP release rate. Cyclic strain induced a strain-dependent release of PTHrP from endothelial cells that was inhibited by the addition of a calcium-chelating agent. In vivo, there was a net release of PTHrP in the coronary circulation and decreases in coronary flow and pressure decreased the PTHrP release rate. Bradykinin in the presence of constant pressure increased PTHrP release, probably by increasing the intracellular calcium concentration in coronary endothelial cells. In summary, mechanical forces evoked by blood flow can trigger a constant PTHrP release.


1990 ◽  
Vol 266 (1) ◽  
pp. 115-122 ◽  
Author(s):  
P Karczewski ◽  
S Bartel ◽  
E G Krause

Phosphorylation of phospholamban (PLB), a membrane-bound 15 kDa protein and troponin I (TNI) was studied in isolated perfused rat hearts by using the back-phosphorylation technique with [32P]ATP catalysed by an excess of exogenous catalytic subunit of cyclic AMP (cAMP)-dependent protein kinase, followed by protein separation. This standardized method allows the quantitative detection of protein phosphorylation specifically stimulated by cAMP. In control hearts the extent of specific phosphorylation was equivalent to 3.3 nmol of PLB and 11.0 mumol of TNI per g of cardiac tissue. In hearts freeze-clamped 30 s after exposure to isoprenaline (10 pM-10 microM), there was a dose-dependent decrease in phosphate incorporation in vitro, indicating a phosphorylation of the respective proteins in vivo. A differential sensitivity of TNI and PLB phosphorylation towards the beta-adrenergic agonist and the subsequent increase in tissue cAMP was found, favouring TNI phosphorylation. K0.5 values for isoprenaline were 2.94 +/- 0.04 nM and 4.46 +/- 0.24 nM for PLB and the 15 kDa protein, but 0.13 +/- 0.01 nM for TNI phosphorylation in the intact tissue. At an isoprenaline-induced increase in cAMP less than 3 pmol/mg of protein there was no or only a small increase in PLB phosphorylation, whereas TNI phosphorylation was nearly maximal. By plotting phosphorylation data against changes in contractile parameters a strong correlation was obtained for TNI (r = 0.95), assuming a linear relationship. For PLB a complex relationship is likely to exist. Our data (i) indicate a functional compartmentalization of the cAMP signal cascade and (ii) confirm that phosphorylation of TNI rather than of PLB is related to changes in mechanical myocardial responses.


1991 ◽  
Vol 273 (3) ◽  
pp. 747-752 ◽  
Author(s):  
G Q Liu ◽  
G Bengtsson-Olivecrona ◽  
P Ostergaard ◽  
T Olivecrona

This study compares a low-Mr heparin preparation with conventional heparin with respect to its interaction with lipoprotein lipase (LPL) in vitro and its effects on the enzyme in vivo. Both heparin preparations were polydisperse in binding to LPL, but on average the low-Mr preparation showed lower affinity. Thus both conventional and low-Mr heparin bound quantitatively to immobilized LPL, and were eluted as broad peaks when a salt gradient was applied, but the peak for low-Mr heparin was shifted towards lower salt concentrations. To displace LPL from immobilized heparin a higher concentration of low-Mr than of conventional heparin was needed. Injection of the low-Mr heparin into intact rats resulted in lower plasma LPL activity than did injection of an equal mass of conventional heparin, but when the liver was excluded from the circulation both heparin preparations resulted in similar plasma LPL activities. In perfused rat hearts, low-Mr heparin had at least the same effect on the release of LPL activity as did conventional heparin. In perfused livers, on the other hand, low-Mr heparin was less effective than conventional heparin in preventing the rapid uptake of exogenous labelled LPL. Hence the apparently lower average affinity of low-Mr heparin for LPL does not result in a demonstrably lower potency to release the enzyme from endothelial binding sites in peripheral tissues, but does result in a substantially decreased effect on the hepatic clearance of the enzyme.


1984 ◽  
Vol 16 ◽  
pp. 65-65
Author(s):  
V PREEDY ◽  
D SMITH ◽  
N KEARNEY ◽  
P SUGDEN
Keyword(s):  

1991 ◽  
Vol 30 (01) ◽  
pp. 35-39 ◽  
Author(s):  
H. S. Durak ◽  
M. Kitapgi ◽  
B. E. Caner ◽  
R. Senekowitsch ◽  
M. T. Ercan

Vitamin K4 was labelled with 99mTc with an efficiency higher than 97%. The compound was stable up to 24 h at room temperature, and its biodistribution in NMRI mice indicated its in vivo stability. Blood radioactivity levels were high over a wide range. 10% of the injected activity remained in blood after 24 h. Excretion was mostly via kidneys. Only the liver and kidneys concentrated appreciable amounts of radioactivity. Testis/soft tissue ratios were 1.4 and 1.57 at 6 and 24 h, respectively. Testis/blood ratios were lower than 1. In vitro studies with mouse blood indicated that 33.9 ±9.6% of the radioactivity was associated with RBCs; it was washed out almost completely with saline. Protein binding was 28.7 ±6.3% as determined by TCA precipitation. Blood clearance of 99mTc-l<4 in normal subjects showed a slow decrease of radioactivity, reaching a plateau after 16 h at 20% of the injected activity. In scintigraphic images in men the testes could be well visualized. The right/left testis ratio was 1.08 ±0.13. Testis/soft tissue and testis/blood activity ratios were highest at 3 h. These ratios were higher than those obtained with pertechnetate at 20 min post injection.99mTc-l<4 appears to be a promising radiopharmaceutical for the scintigraphic visualization of testes.


1997 ◽  
Vol 77 (02) ◽  
pp. 376-382 ◽  
Author(s):  
Bruce Lages ◽  
Harvey J Weiss

SummaryThe possible involvement of secreted platelet substances in agonist- induced [Ca2+]i increases was investigated by comparing these increases in aspirin-treated, fura-2-loaded normal platelets and platelets from patients with storage pool deficiencies (SPD). In the presence and absence of extracellular calcium, the [Ca2+]i response induced by 10 µM ADP, but not those induced by 0.1 unit/ml thrombin, 3.3 µM U46619, or 20 µM serotonin, was significantly greater in SPD platelets than in normal platelets, and was increased to the greatest extent in SPD patients with Hermansky-Pudlak syndrome (HPS), in whom the dense granule deficiencies are the most severe. Pre-incubation of SPD-HPS and normal platelets with 0.005-5 µM ADP produced a dose-dependent inhibition of the [Ca2+]i response induced by 10 µ M ADP, but did not alter the [Ca2+]i increases induced by thrombin or U46619. Within a limited range of ADP concentrations, the dose-inhibition curve of the [Ca2+]i response to 10 µM ADP was significantly shifted to the right in SPD-HPS platelets, indicating that pre-incubation with greater amounts of ADP were required to achieve the same extent of inhibition as in normal platelets. These results are consistent with a hypothesis that the smaller ADP-induced [Ca2+]i increases seen in normal platelets may result from prior interactions of dense granule ADP, released via leakage or low levels of activation, with membrane ADP receptors, causing receptor desensitization. Addition of apyrase to platelet-rich plasma prior to fura-2 loading increased the ADP-induced [Ca2+]i response in both normal and SPD-HPS platelets, suggesting that some release of ADP derived from both dense granule and non-granular sources occurs during in vitro fura-2 loading and platelet washing procedures. However, this [Ca2+]i response was also greater in SPD-HPS platelets when blood was collected with minimal manipulation directly into anticoagulant containing apyrase, raising the possibility that release of dense granule ADP resulting in receptor desensitization may also occur in vivo. Thus, in addition to enhancing platelet activation, dense granule ADP could also act to limit the ADP-mediated reactivity of platelets exposed in vivo to low levels of stimulation.


2021 ◽  
Vol 9 (5) ◽  
pp. 1107
Author(s):  
Wonho Choi ◽  
Yoshihiro Yamaguchi ◽  
Ji-Young Park ◽  
Sang-Hyun Park ◽  
Hyeok-Won Lee ◽  
...  

Agrobacterium tumefaciens is a pathogen of various plants which transfers its own DNA (T-DNA) to the host plants. It is used for producing genetically modified plants with this ability. To control T-DNA transfer to the right place, toxin-antitoxin (TA) systems of A. tumefaciens were used to control the target site of transfer without any unintentional targeting. Here, we describe a toxin-antitoxin system, Atu0939 (mazE-at) and Atu0940 (mazF-at), in the chromosome of Agrobacterium tumefaciens. The toxin in the TA system has 33.3% identity and 45.5% similarity with MazF in Escherichia coli. The expression of MazF-at caused cell growth inhibition, while cells with MazF-at co-expressed with MazE-at grew normally. In vivo and in vitro assays revealed that MazF-at inhibited protein synthesis by decreasing the cellular mRNA stability. Moreover, the catalytic residue of MazF-at was determined to be the 24th glutamic acid using site-directed mutagenesis. From the results, we concluded that MazF-at is a type II toxin-antitoxin system and a ribosome-independent endoribonuclease. Here, we characterized a TA system in A. tumefaciens whose understanding might help to find its physiological function and to develop further applications.


1998 ◽  
Vol 22 ◽  
pp. 306-308
Author(s):  
M. D. Carro ◽  
E. L. Miller

The estimation of rumen microbial protein synthesis is one of the main points in the nitrogen (N)-rationing systems for ruminants, as microbial protein provides proportionately 0.4 to 0.9 of amino acids entering the small intestine in ruminants receiving conventional diets (Russell et al., 1992). Methods of estimating microbial protein synthesis rely on marker techniques in which a particular microbial constituent is related to the microbial N content. Marker : N values have generally been established in mixed bacteria isolated from the liquid fraction of rumen digesta and it has been assumed that the same relationship holds in the total population leaving the rumen (Merry and McAllan, 1983). However, several studies have demonstrated differences in composition between solid-associated (SAB) and fluid-associated bacteria in vivo (Legay-Carmier and Bauchart, 1989) and in vitro (Molina Alcaide et al, 1996), as well in marker : N values (Pérez et al., 1996). This problem could be more pronounced in the in vitro semi-continuous culture system RUSITEC, in which there are three well defined components (a free liquid phase, a liquid phase associated with the solid phase and a solid phase), each one having associated microbial populations.The objective of this experiment was to investigate the effect of using different bacterial isolates (BI) on the estimation of microbial production of four different diets in RUSITEC (Czerkawski and Breckenridge, 1977), using (15NH4)2 SO4 as microbial marker, and to assess what effects any differences would have on the comparison of microbial protein synthesis between diets.This study was conducted in conjunction with an in vitro experiment described by Carro and Miller (1997). Two 14-day incubation trials were carried out with the rumen simulation technique RUSITEC (Czerkawski and Breckenridge, 1977). The general incubation procedure was the one described by Czerkawski and Breckenridge (1977) and more details about the procedures of this experiment are given elsewhere (Carro and Miller, 1997).


Sign in / Sign up

Export Citation Format

Share Document