Protein synthesis in perfused rat hearts after in vivo hyperthermia and in vitro cold ischemia

1988 ◽  
Vol 66 (1) ◽  
pp. 13-19 ◽  
Author(s):  
R. William Currie

Isolated and perfused rat hearts can be maintained for up to 2.5 h with minimal synthesis of a stress protein with a relative mass (Mr) of 71 kilodaltons (SP71). Isolated hearts, subjected to 17 h of cold (4 °C) ischemia, upon perfusion (37 °C) synthesize a large amount of SP71. In the present study, the effect of in vivo hyperthermia on protein synthesis in isolated and perfused hearts was examined. Hearts were excised from rats subjected to a 15-min episode of hyperthermia (42 °C), either immediately (no recovery) or after 24 h of recovery. The excised hearts were perfused either immediately or after 17 h of cold ischemia. Hyperthermia (no recovery) increased [3H]leucine incorporation into SP71, while hyperthermia with a 24-h recovery did not increase incorporation into SP71 during perfusion (no ischemia). Hyperthermia (no recovery) increased the incorporation of [3H]leucine into SP71 seen after cold ischemia. Hyperthermia with a 24-h recovery decreased the incorporation of [3H]leucine into SP71 seen after cold ischemia. This reduction in synthesis of SP71 after 24-h recovery from hyperthermia could be caused by the accumulation of SP71 suppressing its own synthesis or a measure of protection (tolerance) induced by the hyperthermia.

1985 ◽  
Vol 225 (2) ◽  
pp. 487-492 ◽  
Author(s):  
V R Preedy ◽  
D M Smith ◽  
N F Kearney ◽  
P H Sugden

In vivo, fractional rates of protein synthesis in atrial muscle of hearts taken from fed rats were 70% greater than in ventricular muscle. After 3 days starvation, atrial protein synthesis is inhibited, but the inhibition is less than in ventricles. A crude subcellular fractionation of the aqueous homogenates by centrifugation at 32000g showed that the supernatant and precipitate proteins were synthesized at the same rate in the ventricles. The fractional rates of protein synthesis and RNA/protein ratios in the right ventricle were 10% greater than in the left ventricle. Protein synthesis in both of these regions was inhibited equally by starvation. In vitro, rates of protein synthesis in atria and ventricles of anterogradely perfused rat hearts were stimulated by saturating insulin concentrations and were inhibited by starvation, but the effects in atria were smaller than in ventricles. Rates of protein synthesis in atria in vitro were 80-95% of rates in vivo. The heart therefore shows considerable regional variation in rates of protein synthesis in vivo and in vitro, and the sensitivity of protein synthesis in the various regions to interventions such as insulin and starvation differs.


Weed Science ◽  
1980 ◽  
Vol 28 (3) ◽  
pp. 334-340 ◽  
Author(s):  
Luanne M. Deal ◽  
J. T. Reeves ◽  
B. A. Larkins ◽  
F. D. Hess

The effects of chloracetamides on protein synthesis were studied both in vivo and in vitro. Four chloracetamide herbicides, alachlor [2-chloro-2′,6′-diethyl-N-(methoxymethyl)acetanilide], metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide], CDAA (N–N-diallyl-2-chloroacetamide), and propachlor (2-chloro-N-isopropylacetanilide) were tested for inhibition of [3H]-leucine incorporation into protein. Incorporation of3H-leucine into trichloroacetic acid (TCA)-insoluble protein was inhibited in oat (Avena sativaL. ‘Victory’) seedlings grown in sand culture and treated 12 h at 1 × 10−4M with these chloracetamides. The herbicides were also tested in a cell-free protein synthesizing system containing polyribosomes purified from oat root cytoplasm. These herbicides had no effect on the rates of polypeptide elongation nor on the synthesis of specific polypeptides when herbicides (1 × 10−4M) were added directly to the system. Polypeptide formation was inhibited 89% when 1 × 10−4M cycloheximide was added during translation. Cytoplasmic polyribosomes were isolated from oat roots treated 12 h with 1 × 10−4M herbicide. Translation rates and products were not altered when these polyribosomes were added to the in vitro system. Protein synthesis is inhibited when tested in an in vivo system; however, the inhibition does not occur during the translation of mRNA into protein.


1973 ◽  
Vol 72 (4) ◽  
pp. 684-696 ◽  
Author(s):  
Amirav Gordon ◽  
Martin I. Surks ◽  
Jack H. Oppenheimer

ABSTRACT The in vivo and in vitro stimulation of rat hepatic mitochondrial protein synthesis by thyroxine (T4) was compared. In confirmation of Buchanan & Tapley (1966). T4 added to isolated mitochondria rapidly stimulated [14C] leucine incorporation into mitochondrial protein. The in vitro stimulation was reversed after T4 was removed by incubating the mitochondria with bovine serum albumin (BSA). The decrease in T4 stimulation of protein synthesis appeared proportional to the T4 removed by BSA. Thus, it appears probable that exchangeable T4 controls the in vitro system. In contrast, the increase in mitochondrial protein synthesis which was observed 3 to 4 days after pretreatment of hypothyroid rats with labelled and non-radioactive T4 was not reversed by BSA treatment. Moreover, mitochondrial radioactivity could not be extracted with albumin. The in vivo phenomenon does not, therefore, appear to be related to exchangeable hormone in the mitochondria. Furthermore, the estimated quantity of T4 associated with mitochondria after in vivo stimulation was at least two orders of magnitude less than that required to produce comparable stimulation of mitochondrial protein synthesis in vitro. These findings strongly suggest that in vitro and in vivo stimulation of amino acid incorporation by T4 may be mediated by different biochemical mechanisms.


1989 ◽  
Vol 169 (4) ◽  
pp. 1467-1472 ◽  
Author(s):  
TR Billiar ◽  
RD Curran ◽  
DJ Stuehr ◽  
MA West ◽  
BG Bentz ◽  
...  

The hepatic failure associated with severe sepsis is characterized by specific, progressive, and often irreversible defects in hepatocellular metabolism (1). Although the etiologic microbe can often be identified, the direct causes and mechanisms of the hepatocellular dysfunction are poorly understood. We have hypothesized that Kupffer cells (KC), which interact with ambient septic stimuli, respond by providing signals to adjacent hepatocytes (HC) in sepsis . Furthermore, we have provided evidence (2, 3) that KC activated by LPS from Gram-negative bacteria can induce profound changes in the function of neighboring HC in coculture. In our model, coculture of either KC (2) or peritoneal macrophages (Mφ)(3) with HC normally promotes HC protein synthesis ([(3)H]leucine incorporation). The addition of LPS or killed Escherichia colt' to such cocultures induces a profound decrease in HC protein synthesis, as well as qualitative changes ([(35)S]methionine, SDS-gel electrophoresis) in protein synthesis without inducing HC death (2, 3) . In this report we show that the inhibition in protein synthesis is mediated via an L-arginine-dependent mechanism. The metabolism of L-arginine by activated Mφ to substances with cytostatic and even lethal effects on target cells is a relatively recent discovery. After the description by Stuehr and Marletta (4, 5) that LPS- triggered Mφ produced nitrite/nitrate (NO(2)(-)/NO(3)(-)), Hibbs et al. (6, 7) and Iyengar et al. (8) demonstrated that L-arginine was the substrate for the formation of both these nitrogen end products and citrulline. A role for the arginine-dependent mechanism in Mφ tumor cytotoxicity (6, 7) and microbiostatic activity (9) has been suggested. However, the in vivo functions of this novel Mφ mechanism have not yet been defined, but it is possible that there are both physiologic as well as pathologic roles. Our in vitro results raise the possibility that some metabolic responses to microbial invasion maybe partially mediated by the L-arginine-dependent mechanism. What other metabolic responses are affected and the possible pathologic consequences remain to be studied.


2002 ◽  
Vol 283 (4) ◽  
pp. H1489-H1496 ◽  
Author(s):  
Heike Degenhardt ◽  
Johanna Jansen ◽  
Rainer Schulz ◽  
Daniel Sedding ◽  
Ruediger Braun-Dullaeus ◽  
...  

10.1152/ajpheart.00925. 2001.—Parathyroid hormone-related peptide (PTHrP) is expressed throughout the cardiovascular system and is able to dilate vessels. This study investigated whether mechanical forces generated by changes in regional perfusion influence PTHrP release from the coronary vascular bed. Experiments were performed in vitro on saline-perfused rat hearts or isolated coronary endothelial cells exposed to cyclic strain and in vivo in anesthetized pigs. In vitro, PTHrP release from saline-perfused rat hearts was strongly correlated with coronary flow ( r = 0.84). Increasing coronary flow from 5 to 10 ml/min increased PTHrP release from 442 ± 42 to 1,563 ± 167 pg/min. Increasing the viscosity of the perfusate did not change basal PTHrP release. Increasing flow without a concomitant increase in pressure did not lead to an increase in release rate, but reduction in pressure under flow-constant conditions reduced PTHrP release rate. Cyclic strain induced a strain-dependent release of PTHrP from endothelial cells that was inhibited by the addition of a calcium-chelating agent. In vivo, there was a net release of PTHrP in the coronary circulation and decreases in coronary flow and pressure decreased the PTHrP release rate. Bradykinin in the presence of constant pressure increased PTHrP release, probably by increasing the intracellular calcium concentration in coronary endothelial cells. In summary, mechanical forces evoked by blood flow can trigger a constant PTHrP release.


1987 ◽  
Vol 244 (1) ◽  
pp. 239-242 ◽  
Author(s):  
M W Pierce ◽  
K Coombs ◽  
M Young ◽  
J Avruch

Insulin and insulin-related growth factor 1 (IGF-1) increase by 1.5-1.6-fold the rate of [3H]leucine incorporation into protein in primary monolayer cultures of chick-embryo fibroblasts (CEF); half-maximal hormone concentrations are 10 and 0.25 nM respectively. To investigate the mechanism of this effect, a rapid method is used to prepare a lysate from CEF which is active in protein synthesis. Lysate derived from cells treated for 30-150 min with insulin synthesized protein at 1.8-3.0-fold greater rate than did controls; the increased rate persisted for 20 min in vitro. Pactamycin (0.5 microM), an inhibitor of peptide-chain initiation, inhibited protein synthesis by 50% in lysates derived from insulin-treated and control cells. Thus insulin and IGF-1 cause an increase in the protein-synthesis rate in vivo, which persists in cell-free protein-synthesizing lysates of CEF.


1991 ◽  
Vol 273 (3) ◽  
pp. 747-752 ◽  
Author(s):  
G Q Liu ◽  
G Bengtsson-Olivecrona ◽  
P Ostergaard ◽  
T Olivecrona

This study compares a low-Mr heparin preparation with conventional heparin with respect to its interaction with lipoprotein lipase (LPL) in vitro and its effects on the enzyme in vivo. Both heparin preparations were polydisperse in binding to LPL, but on average the low-Mr preparation showed lower affinity. Thus both conventional and low-Mr heparin bound quantitatively to immobilized LPL, and were eluted as broad peaks when a salt gradient was applied, but the peak for low-Mr heparin was shifted towards lower salt concentrations. To displace LPL from immobilized heparin a higher concentration of low-Mr than of conventional heparin was needed. Injection of the low-Mr heparin into intact rats resulted in lower plasma LPL activity than did injection of an equal mass of conventional heparin, but when the liver was excluded from the circulation both heparin preparations resulted in similar plasma LPL activities. In perfused rat hearts, low-Mr heparin had at least the same effect on the release of LPL activity as did conventional heparin. In perfused livers, on the other hand, low-Mr heparin was less effective than conventional heparin in preventing the rapid uptake of exogenous labelled LPL. Hence the apparently lower average affinity of low-Mr heparin for LPL does not result in a demonstrably lower potency to release the enzyme from endothelial binding sites in peripheral tissues, but does result in a substantially decreased effect on the hepatic clearance of the enzyme.


1984 ◽  
Vol 16 ◽  
pp. 65-65
Author(s):  
V PREEDY ◽  
D SMITH ◽  
N KEARNEY ◽  
P SUGDEN
Keyword(s):  

1973 ◽  
Vol 72 (3) ◽  
pp. 453-463 ◽  
Author(s):  
Gustav Wägar ◽  
Ragnar Ekholm ◽  
Ulla Björkman

ABSTRACT The effect of TSH on the incorporation of L-14C-leucine into thyroid proteins was studied in vivo in rats as well as in vitro on bovine thyroid slices and a microsomal subfraction. It was found that TSH reduced the incorporation of radio-leucine into the proteins of slices during the first 2 hours when the concentration of non-labelled leucine in the incubation medium was low. When cold leucine was added to the medium this inhibitory effect was no longer observed. After 6 hours a stimulatory effect on the radio-leucine incorporation by TSH was obvious at both low and high leucine concentrations. The incorporation of 14C-leucine into proteins by the microsomal fraction incubated with a pH 5-fraction was reduced by TSH but this inhibitory effect of TSH disapperaed when post-microsomal supernatant, containing free amino acids, was added to the incubation mixture. It is suggested that the apparent inhibitory effect of TSH on protein synthesis in thyroid slices is due to an altered ratio labelled/non-labelled leucine, caused by stimulation of proteolysis by TSH. This explanation does not seem applicable, however, to the similar apparently inhibitory effect of TSH on protein synthesis observed in the microsomal fraction. In the in vivo experiments a stimulation of the incorporation of labelled leucine could not be observed until 4 hours after the TSH administration. It is suggested that this apparently slow effect of TSH on protein synthesis might be explained either by an indirect effect of TSH on protein synthesis or by a TSH-induced change of the ratio labelled/non-labelled leucine.


1989 ◽  
Vol 67 (3) ◽  
pp. 197-201 ◽  
Author(s):  
Pierre Paradis ◽  
Jean-Lucien Rouleau ◽  
Hossein Shenasa ◽  
Léa Brakier-Gingras

Congestive heart failure was induced in rabbits by a chronic treatment with a low dose of adriamycin (0.75 mg/kg intravenously 3 times per week for 11 weeks). Twenty-four to 48 h after the last injection, adriamycin-treated rabbits had a three-fold increase in plasma norepinephrine, a seven-fold increase in plasma epinephrine, a 19 ± 8% increase in heart rate, and a 54 ± 10% decrease in the total tension generated by their isolated papillary muscles, when compared with normal age-matched controls. This demonstrated the occurrence of the cardiomyopathy and heart failure. The effect of adriamycin on myocardial and diaphragmatic protein synthesis was examined in vivo after a 1-h infusion with [3H]leucine and in vitro after a 2-h incubation of right ventricular papillary muscle with [3H]leucine. The rate of in vivo [3H]leucine incorporation into total protein was increased in the heart of the adriamycin-treated rabbits. The increases were 60 ± 16% in the left ventricle, 49 ± 18% in the septum, 32 ± 18% in the right ventricle, and 66 ± 16% in the atria. A similar increase was observed when measuring the rate of [3H]leucine incorporation into myosin, a myofibrillar protein, and when the rate of [3H]leucine incorporation into total protein was measured in vitro in papillary muscle. In contrast, the rate of [3H]leucine incorporation into total protein of the diaphragm was not significantly changed. We suggest that when cardiomyopathy is induced by a chronic treatment with a low dose of adriamycin, the factors that accompany congestive heart failure can compensate and even overcome the inhibitory direct effects of adriamycin on protein synthesis, causing a net increase in the rate of protein synthesis.Key words: adriamycin, protein synthesis, cardiomyopathy.


Sign in / Sign up

Export Citation Format

Share Document