scholarly journals A class-A β-lactamase from Pseudomonas stutzeri that is highly active against monobactams and cefotaxime

1993 ◽  
Vol 292 (3) ◽  
pp. 697-700 ◽  
Author(s):  
N Franceschini ◽  
M Galleni ◽  
J M Frère ◽  
A Oratore ◽  
G Amicosante

A beta-lactamase produced by Pseudomonas stutzeri was purified to protein homogeneity, and its physicochemical and catalytic properties were determined. Its profile was unusual since, in addition to penicillins, the enzyme hydrolysed second- and third-generation ‘beta-lactamase-stable’ cephalosporins and monobactams with similar efficiencies. On the basis of the characteristics of the interaction with beta-iodopenicillanic acid, the enzyme could be classified as a class-A beta-lactamase. However, when compared with most class-A beta-lactamases, it exhibited significantly lower kcat./Km values for the compounds usually considered to be the best substrates of these enzymes.

1991 ◽  
Vol 273 (3) ◽  
pp. 503-510 ◽  
Author(s):  
A Matagne ◽  
B Joris ◽  
J Van Beeumen ◽  
J M Frère

Four beta-lactamases excreted by Gram-positive bacteria exhibited microheterogeneity when analysed by chromatofocusing or ion-exchange chromatography. Ragged N-termini were in part responsible for the charge variants, but deamidation of an asparagine residue was also involved, at least for the Bacillus licheniformis enzyme. The activity of a contaminating proteinase could also be demonstrated in the case of Actinomadura R39 beta-lactamase. With that enzyme, proteolysis resulted in partial inactivation, but the inactivated fragments were easily separated from the active forms. With these, as with the other enzymes, the kinetic parameters of the major variants were identical with those of the mixture within the limits of experimental error, so that the catalytic properties of these enzymes can be determined with the ‘heterogeneous’ preparations.


1993 ◽  
Vol 292 (2) ◽  
pp. 555-562 ◽  
Author(s):  
P Ledent ◽  
X Raquet ◽  
B Joris ◽  
J Van Beeumen ◽  
J M Frère

Three class-D beta-lactamases (OXA2, OXA1 and PSE2) were produced and purified to protein homogeneity. 6 beta-Iodopenicillanate inactivated the OXA2 enzyme without detectable turnover. Labelling of the same beta-lactamase with 6 beta-iodo[3H]penicillanate allowed the identification of Ser-70 as the active-site serine residue. In agreement with previous reports, the apparent M(r) of the OXA2 enzyme as determined by molecular-sieve filtration, was significantly higher than that deduced from the gene sequence, but this was not due to an equilibrium between a monomer and a dimer. The heterogeneity of the OXA2 beta-lactamase on ion-exchange chromatography contrasted with the similarity of the catalytic properties of the various forms. A first overview of the enzymic properties of the three ‘oxacillinases’ is presented. With the OXA2 enzyme, ‘burst’ kinetics, implying branched pathways, seemed to prevail with many substrates.


1996 ◽  
Vol 40 (3) ◽  
pp. 616-620 ◽  
Author(s):  
A Bauernfeind ◽  
I Stemplinger ◽  
R Jungwirth ◽  
P Mangold ◽  
S Amann ◽  
...  

Plasmidic extended-spectrum beta-lactamases of Ambler class A are mostly inactive against ceftibuten. Salmonella typhimurium JMC isolated in Argentina harbors a bla gene located on a plasmid (pMVP-5) which confers transferable resistance to oxyiminocephalosporins, aztreonam, and ceftibuten. The beta-lactamase PER-2 (formerly ceftibutenase-1; CTI-1) is highly susceptible to inhibition by clavulanate and is located at a pI of 5.4 after isoelectric focusing. The blaPER-2 gene was cloned and sequenced. The nucleotide sequence of a 2.2-kb insert in vector pBluescript includes an open reading frame of 927 bp. Comparison of the deduced amino acid sequence of PER-2 with those of other beta-lactamases indicates that PER-2 is not closely related to TEM or SHV enzymes (25 to 26% homology). PER-2 is most closely related to PER-1 (86.4% homology), an Ambler class A enzyme first detected in Pseudomonas aeruginosa. An enzyme with an amino acid sequence identical to that of PER-1, meanwhile, was found in various members of the family Enterobacteriaceae isolated from patients in Turkey. Our data indicate that PER-2 and PER-1 represent a new group of Ambler class A extended-spectrum beta-lactamases. PER-2 so far has been detected only in pathogens (S. typhimurium, Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis) isolated from patients in South America, while the incidence of PER-1-producing strains so far has been restricted to Turkey, where it occurs both in members of the family Enterobacteriaceae and in P. aeruginosa.


1993 ◽  
Vol 291 (1) ◽  
pp. 151-155 ◽  
Author(s):  
A Felici ◽  
G Amicosante ◽  
A Oratore ◽  
R Strom ◽  
P Ledent ◽  
...  

The catalytic properties of three class B beta-lactamases (from Pseudomonas maltophilia, Aeromonas hydrophila and Bacillus cereus) were studied and compared with those of the Bacteroides fragilis enzyme. The A. hydrophila beta-lactamase exhibited a unique specificity profile and could be considered as a rather specific ‘carbapenemase’. No relationships were found between sequence similarities and catalytic properties. The problem of the repartition of class B beta-lactamases into sub-classes is discussed. Improved purification methods were devised for the P. maltophilia and A. hydrophila beta-lactamases including, for the latter enzyme, a very efficient affinity chromatography step on a Zn(2+)-chelate column.


1988 ◽  
Vol 253 (2) ◽  
pp. 323-328 ◽  
Author(s):  
J Monks ◽  
S G Waley

The interaction between imipenem, a carbapenem antibiotic, and two representative beta-lactamases has been studied. The first enzyme was beta-lactamase I, a class-A beta-lactamase from Bacillus cereus; imipenem behaved as a slow substrate (kcat. 6.7 min-1, Km 0.4 mM at 30 degrees C and at pH 7) that reacted by a branched pathway. There was transient formation of an altered species formed in a reversible reaction; this species was probably an acyl-enzyme in a slightly altered, but considerably more labile, conformation. The kinetics of the reaction were investigated by measuring both the concentration of the substrate and the activity of the enzyme, which fell and then rose again more slowly. The second enzyme was the chromosomal class-C beta-lactamase from Pseudomonas aeruginosa; imipenem was a substrate with a low kcat. (0.8 min-1) and a low Km (0.7 microM). Possible implications for the clinical use of imipenem are considered.


1991 ◽  
Vol 275 (3) ◽  
pp. 793-795 ◽  
Author(s):  
J Rahil ◽  
R F Pratt

Phosphonate monoesters with the general structure: [formula: see text] are inhibitors of representative class A and class C beta-lactamases. This result extends the range of this type of inhibitor to the class A enzymes. Compounds where X is an electron-withdrawing substituent are better inhibitors than the unsubstituted analogue (X = H), and enzyme inhibition is concerted with stoichiometric release of the substituted phenol. Slow turnover of the phosphonates also occurs. These observations support the proposition that the mechanism of action of these inhibitors involves phosphorylation of the beta-lactamase active site. The inhibitory ability of these phosphonates suggests that the beta-lactamase active site is very effective at stabilizing negatively charged transition states. One of the compounds described also inactivated the Streptomyces R61 D-alanyl-D-alanine carboxypeptidase/transpeptidase.


1996 ◽  
Vol 40 (2) ◽  
pp. 509-513 ◽  
Author(s):  
A Bauernfeind ◽  
I Stemplinger ◽  
R Jungwirth ◽  
S Ernst ◽  
J M Casellas

Amino acid sequences determined either by protein sequencing or by DNA sequencing are identical for cefotaximases CTX-M-1 and MEN-1, whereas CTX-M-2 is 84% identical to CTX-M-1/MEN-1. Both beta-lactamases are distantly related to other plasmidic class A enzymes (homology to TEM-1 is 38.1% for CTX-M-1/MEN-1 and 36.5% for CTX-M-2); the closest relationship was with the chromosomal beta-lactamase of Klebsiella oxytoca E23004 (homologies of 74.5% for CTX-M-1/MEN-1 and 77.9% for CTX-M-2). The cefotaximases CTX-M-1/MEN-1 and CTX-M-2 represent two members of a new subgroup of plasmidic class A beta-lactamases.


2017 ◽  
Vol 61 (11) ◽  
Author(s):  
Olga Lomovskaya ◽  
Dongxu Sun ◽  
Debora Rubio-Aparicio ◽  
Kirk Nelson ◽  
Ruslan Tsivkovski ◽  
...  

ABSTRACT Vaborbactam (formerly RPX7009) is a new beta-lactamase inhibitor based on a cyclic boronic acid pharmacophore. The spectrum of beta-lactamase inhibition by vaborbactam and the impact of bacterial efflux and permeability on its activity were determined using a panel of strains with beta-lactamases cloned from various classes and a panel of Klebsiella pneumoniae carbapenemase 3 (KPC-3)-producing isogenic strains with various combinations of efflux and porin mutations. Vaborbactam is a potent inhibitor of class A carbapenemases, such as KPC, as well as an inhibitor of other class A (CTX-M, SHV, TEM) and class C (P99, MIR, FOX) beta-lactamases. Vaborbactam does not inhibit class D or class B carbapenemases. When combined with meropenem, vaborbactam had the highest potency compared to the potencies of vaborbactam in combination with other antibiotics against strains producing the KPC beta-lactamase. Consistent with broad-spectrum beta-lactamase inhibition, vaborbactam reduced the meropenem MICs for engineered isogenic strains of K. pneumoniae with increased meropenem MICs due to a combination of extended-spectrum beta-lactamase production, class C beta-lactamase production, and reduced permeability due to porin mutations. Vaborbactam crosses the outer membrane of K. pneumoniae using both OmpK35 and OmpK36, but OmpK36 is the preferred porin. Efflux by the multidrug resistance efflux pump AcrAB-TolC had a minimal impact on vaborbactam activity. Investigation of the vaborbactam concentration necessary for restoration of meropenem potency showed that vaborbactam at 8 μg/ml results in meropenem MICs of ≤2 μg/ml in the most resistant engineered strains containing multiple mutations. Vaborbactam is a highly active beta-lactamase inhibitor that restores the activity of meropenem and other beta-lactam antibiotics in beta-lactamase-producing bacteria, particularly KPC-producing carbapenem-resistant Enterobacteriaceae.


1986 ◽  
Vol 240 (1) ◽  
pp. 215-219 ◽  
Author(s):  
C Little ◽  
E L Emanuel ◽  
J Gagnon ◽  
S G Waley

Beta-lactamases are divided into classes A, B and C on the basis of their amino acid sequences. Beta-Lactamases were incubated at pH 4.0 with the carboxy-group reagent 1-(3-dimethylaminopropyl)-3-ethylcarbodi-imide plus a coloured nucleophile and the extents of inactivation and nucleophile incorporation were monitored. Two class A enzymes (from Bacillus cereus and Bacillus licheniformis) and two class C enzymes (from Enterobacter cloacae P99 and Pseudomonas aeruginosa) were examined. All four enzymes were inactivated, with total inactivation corresponding to the incorporation of approx. 2-3 mol of nucleophile/mol of enzyme. In the case of beta-lactamase I from Bacillus cereus, some 53% of the incorporated nucleophile was located on glutamic acid-168 in the amino acid sequence.


1991 ◽  
Vol 279 (1) ◽  
pp. 111-114 ◽  
Author(s):  
J Martin Villacorta ◽  
P Arriaga ◽  
J Laynez ◽  
M Menendez

The influence of C-6 alpha- or C-7 alpha-methoxylation of the beta-lactam ring in the catalytic action of class A and B beta-lactamases has been investigated. For this purpose the kinetic behaviour of beta-lactamases I (class A) and II (class B) from Bacillus cereus was analysed by using several cephamycins, moxalactam, temocillin and related antibiotics. These compounds behaved as poor substrates for beta-lactamase II, with high Km values and very low catalytic efficiencies. In the case of beta-lactamase I, the substitution of a methoxy group for a H atom at C-7 alpha or C-6 alpha decreased the affinity of the substrates for the enzyme. Furthermore, the acylation of cephamycins was completely blocked, whereas that of penicillins was slowed down by a factor of 10(4)-10(5), acylation being the rate-determining step of the process.


Sign in / Sign up

Export Citation Format

Share Document