scholarly journals Perinatal maturation of rat kidney mitochondria

1995 ◽  
Vol 305 (2) ◽  
pp. 675-680 ◽  
Author(s):  
B Prieur ◽  
L Cordeau-Lossouarn ◽  
A Rotig ◽  
J Bismuth ◽  
J P Geloso ◽  
...  

In the rat kidney, NaK-ATPase activity increased between days 19 and 20 of gestation (+50%) and between 1 and 24 h after birth (+20%), requiring an increased energy supply. In order to determine whether mitochondrial changes were involved, renal mitochondrial development was investigated from day 19 of gestation to 1 day after birth. Slot-blot analyses of mitochondrial-DNA/nuclear-DNA ratio and determination of citrate synthase activity showed a doubling in the mitochondrial pool between days 19 and 20 of gestation. In isolated mitochondria, oxygen consumption remained unchanged between days 19 and 20 of gestation, and then it was enhanced between days 20 and 21 of gestation (+70%) and between 1 and 24 h after birth (+50%). We also focused on one of the respiratory-chain complexes, ATP synthase, and measured its activity and content during the perinatal period. We demonstrated increases in both activity and content of ATP synthase between days 20 and 21 of gestation and between 1 and 24 h after birth, thus suggesting that changes in ATP synthase activity are ascribed to an increase in the mitochondrial density of ATP synthase complexes. Moreover, the mitochondrial ATP/ADP ratio only increased between 1 and 24 h (+90%), indicating a critical step in the renal respiratory-chain maturation at that time. We therefore conclude that the postnatal enhancement of renal mitochondrial oxidative capacity might depend on protein synthesis de novo and on changes in the adenine nucleotide concentrations.

2006 ◽  
Vol 291 (6) ◽  
pp. C1172-C1182 ◽  
Author(s):  
G. Benard ◽  
B. Faustin ◽  
E. Passerieux ◽  
A. Galinier ◽  
C. Rocher ◽  
...  

To investigate the physiological diversity in the regulation and control of mitochondrial oxidative phosphorylation, we determined the composition and functional features of the respiratory chain in muscle, heart, liver, kidney, and brain. First, we observed important variations in mitochondrial content and infrastructure via electron micrographs of the different tissue sections. Analyses of respiratory chain enzyme content by Western blot also showed large differences between tissues, in good correlation with the expression level of mitochondrial transcription factor A and the activity of citrate synthase. On the isolated mitochondria, we observed a conserved molar ratio between the respiratory chain complexes and a variable stoichiometry for coenzyme Q and cytochrome c, with typical values of [1–1.5]:[30–135]:[3]:[9–35]:[6.5–7.5] for complex II:coenzyme Q:complex III:cytochrome c:complex IV in the different tissues. The functional analysis revealed important differences in maximal velocities of respiratory chain complexes, with higher values in heart. However, calculation of the catalytic constants showed that brain contained the more active enzyme complexes. Hence, our study demonstrates that, in tissues, oxidative phosphorylation capacity is highly variable and diverse, as determined by different combinations of 1) the mitochondrial content, 2) the amount of respiratory chain complexes, and 3) their intrinsic activity. In all tissues, there was a large excess of enzyme capacity and intermediate substrate concentration, compared with what is required for state 3 respiration. To conclude, we submitted our data to a principal component analysis that revealed three groups of tissues: muscle and heart, brain, and liver and kidney.


2017 ◽  
Vol 482 (4) ◽  
pp. 922-927 ◽  
Author(s):  
Isabella Panfoli ◽  
Marco Ponassi ◽  
Silvia Ravera ◽  
Daniela Calzia ◽  
Maider Beitia ◽  
...  

2012 ◽  
Vol 24 (2) ◽  
pp. 115-121 ◽  
Author(s):  
Gabriela K. Ferreira ◽  
Gislaine T. Rezin ◽  
Mariane R. Cardoso ◽  
Cinara L. Gonçalves ◽  
Lislaine S. Borges ◽  
...  

Objectives: Based on the hypothesis that energy impairment may be involved in the pathophysiology of depression, we evaluated the activities of citrate synthase, malate dehydrogenase, succinate dehydrogenase (SDH), mitochondrial respiratory chain complexes I, II, II-III, IV and creatine kinase (CK) in the brain of rats submitted to chronic administration of bupropion.Methods: Animals received daily administration of bupropion dissolved in saline (10 mg/kg, intraperitoneal) at 1.0 ml/kg body weight. The rats received injections once a day for 14 days; control rats received an equivalent volume of saline. Twelve hours after the last administration, the rats were killed by decapitation and brain was rapidly removed and kept on an ice plate. The activities of the enzymes were measured in different brain areas.Results: We observed that the activities of citrate synthase and malate dehydrogenase, mithocondrial respiratory chain complexes I, II-III and IV and CK were not altered after chronic administration of bupropion. However, SDH activity was increased in the prefrontal cortex and cerebellum. In the hippocampus, cerebellum and striatum the activity of complex II was increased after chronic administration of bupropion.Conclusions: Our results demonstrated that bupropion increased some enzymes of brain energy metabolism. These findings are in accordance with other studies which showed that some antidepressants may improve energy metabolism. The present results reinforce the hypothesis that antidepressants modulate brain energy metabolism.


1997 ◽  
Vol 17 (11) ◽  
pp. 1166-1169 ◽  
Author(s):  
Laura Canevari ◽  
Satoshi Kuroda ◽  
Timothy E. Bates ◽  
John B. Clark ◽  
Bo K. Siesjö

Previous results demonstrated that after 2-hour middle cerebral artery occlusion (MCAO) in the rat, 1- to 2-hour recirculation temporarily restored the bioenergetic state and mitochondrial function, but secondary deterioration took place after 4 hours. The authors measured the activity of mitochondrial respiratory chain complexes, citrate synthase, and glutamate dehydrogenase as possible targets of secondary damage. Focal and penumbral tissues were sampled in the control condition, after 2 hours of MCAO, and after 1, 2, or 4 hours of postischemic recirculation; two groups were treated with α-phenyl-N- tert-butyl-nitrone (PBN). Complex IV activity transiently decreased after MCAO, but after recirculation all measured activities returned to control values.


2014 ◽  
Vol 1837 (10) ◽  
pp. 1781-1789 ◽  
Author(s):  
Nicola Sassi ◽  
Andrea Mattarei ◽  
Michele Azzolini ◽  
Ildiko' Szabo' ◽  
Cristina Paradisi ◽  
...  

2013 ◽  
Vol 20 (3) ◽  
pp. 371-381 ◽  
Author(s):  
Ségolène Hescot ◽  
Abdelhamid Slama ◽  
Anne Lombès ◽  
Angelo Paci ◽  
Hervé Remy ◽  
...  

Mitotane, 1,1-dichloro-2-(o-chlorophenyl)-2-(p-chlorophenyl)ethane is the most effective medical therapy for adrenocortical carcinoma, but its molecular mechanism of action remains poorly understood. Although mitotane is known to have mitochondrial (mt) effects, a direct link to mt dysfunction has never been established. We examined the functional consequences of mitotane exposure on proliferation, steroidogenesis, and mt respiratory chain, biogenesis and morphology, in two human adrenocortical cell lines, the steroid-secreting H295R line and the non-secreting SW13 line. Mitotane inhibited cell proliferation in a dose- and a time-dependent manner. At the concentration of 50 μM (14 mg/l), which corresponds to the threshold for therapeutic efficacy, mitotane drastically reduced cortisol and 17-hydroxyprogesterone secretions by 70%. This was accompanied by significant decreases in the expression of genes encoding mt proteins involved in steroidogenesis (STAR, CYP11B1, and CYP11B2). In both H295R and SW13 cells, 50 μM mitotane significantly inhibited (50%) the maximum velocity of the activity of the respiratory chain complex IV (cytochrome c oxidase (COX)). This effect was associated with a drastic reduction in steady-state levels of the whole COX complex as revealed by blue native PAGE and reduced mRNA expression of both mtDNA-encoded COX2 (MT-CO2) and nuclear DNA-encoded COX4 (COX4I1) subunits. In contrast, the activity and expression of respiratory chain complexes II and III were unaffected by mitotane treatment. Lastly, mitotane exposure enhanced mt biogenesis (increase in mtDNA content and PGC1α (PPARGC1A) expression) and triggered fragmentation of the mt network. Altogether, our results provide first evidence that mitotane induced a mt respiratory chain defect in human adrenocortical cells.


1996 ◽  
Vol 9 (6) ◽  
pp. 775-780 ◽  
Author(s):  
E. Ciceri ◽  
I. Moroni ◽  
G. Uziel ◽  
M. Savoiardo

The mitochondrial encephalomyopathies are relatively rare neuromuscular diseases clinically characterised by myopathy and encephalopathy caused by structurally or functionally impaired mitochondria. The biochemical hallmark of this group of disorders is impaired mitochondrial energy production: Kreb's cycle, respiratory chain, oxidative phosphorylation and beta-oxidation of fatty acids. The presence of lactic acidosis and ragged red fibres, i.e. subsarcolemmal accumulations of abnormally sized mitochondria are highly indicative findings for mitochondrial disease. Classification and diagnostic criteria are based on biochemical findings with a search for specific enzyme deficit and molecular genetic information. Molecular genetic studies aim to identify the mitochondrial DNA changes responsible for the enzyme defect. Ragged red fibres are not essential for diagnosis as they are not present in some diseases. In rare cases, mitochondrial diseases are caused by nuclear DNA defects or, more commonly a mitochondrial DNA deficit. Diagnosis may prove difficult given the pathogenetic complexity and clinical and phenotypical variability of these conditions. Despite indirect symptoms of mitochondrial disease, the enzyme defect and genetic alteration cannot be identified in some cases. The mitochondrial encephalopathies can be classified according to the metabolic pathways involved into impaired transport ot uptake of energy, impaired Kreb's cycle or respiratory chain complexes or complex defects due to mitochondrial DNA changes.


2020 ◽  
Vol 223 (21) ◽  
pp. jeb233684
Author(s):  
Damien Roussel ◽  
Vincent Marmillot ◽  
Pierre-Axel Monternier ◽  
Aurore Bourguignon ◽  
Gaëlle Toullec ◽  
...  

ABSTRACTAt fledging, juvenile king penguins (Aptenodytes patagonicus) must overcome the tremendous energetic constraints imposed by their marine habitat, including during sustained extensive swimming activity and deep dives in cold seawater. Both endurance swimming and skeletal muscle thermogenesis require high mitochondrial respiratory capacity while the submerged part of dive cycles repeatedly and greatly reduces oxygen availability, imposing a need for solutions to conserve oxygen. The aim of the present study was to determine in vitro whether skeletal muscle mitochondria become more ‘thermogenic’ to sustain heat production or more ‘economical’ to conserve oxygen in sea-acclimatized immature penguins (hereafter ‘immatures’) compared with terrestrial juveniles. Rates of mitochondrial oxidative phosphorylation were measured in permeabilized fibers and mitochondria from the pectoralis muscle. Mitochondrial ATP synthesis and coupling efficiency were measured in isolated muscle mitochondria. The mitochondrial activities of respiratory chain complexes and citrate synthase were also assessed. The results showed that respiration, ATP synthesis and respiratory chain complex activities in pectoralis muscles were increased by sea acclimatization. Furthermore, muscle mitochondria were on average 30–45% more energy efficient in sea-acclimatized immatures than in pre-fledging juveniles, depending on the respiratory substrate used (pyruvate, palmitoylcarnitine). Hence sea acclimatization favors the development of economical management of oxygen, decreasing the oxygen needed to produce a given amount of ATP. This mitochondrial phenotype may improve dive performance during the early marine life of king penguins, by extending their aerobic dive limit.


1993 ◽  
Vol 303 (2) ◽  
pp. 195-207 ◽  
Author(s):  
T. Hagen ◽  
J.L. Joyal ◽  
W. Henke ◽  
J.R. Aprille

Sign in / Sign up

Export Citation Format

Share Document