scholarly journals Characterization and partial purification of a ferrireductase from human duodenal microvillus membranes

1995 ◽  
Vol 309 (3) ◽  
pp. 745-748 ◽  
Author(s):  
H D Riedel ◽  
A J Remus ◽  
B A Fitscher ◽  
W Stremmel

Reduction of ferric iron in the presence of HuTu 80 cells or duodenal microvillus membranes (MVMs) was investigated. With both systems, NADH-dependent reduction of Fe3+/NTA (nitrilotriacetic acid) was demonstrated, using the ferrous iron chelator ferrozine. Uptake of Fe3+ from Fe3+/NTA by HuTu 80 cells was strongly inhibited by addition of ferrozine, indicating that Fe2+ is the substrate for the iron uptake system. With isolated plasma membranes it is shown that the reductase activity is sensitive to trypsin and incubation at 65 degrees C. The reductase activity could be extracted from the plasma membrane and partially purified by ammonium sulphate precipitation and isoelectric focusing. From the purification and inhibition characteristics we conclude that reduction of ferric iron on the surface of duodenal plasma membranes is catalysed by a membrane protein.

1987 ◽  
Vol 252 (5) ◽  
pp. C477-C482 ◽  
Author(s):  
C. T. Wong ◽  
H. J. McArdle ◽  
E. H. Morgan

The uptake of radiolabelled transferrin and iron by the rat placenta has been studied using two approaches. The first involved injection of a ferrous or ferric iron chelator followed by injection of label. Neither chelator decreased the amount of labelled transferrin in the placenta after 2-h incubation and only bipyridine, a ferrous iron chelator, inhibited iron transport to the fetus. Deferoxamine (DFO), a ferric iron chelator, had no effect on iron transport to the fetus but reduced iron uptake by the liver. Both bipyridine and DFO increased iron excretion into the gut and by the urinary tract to the same degree into the gut, but there was a 10-fold greater urinary excretion with bipyridine than with DFO. Injection of iron attached to the chelators showed that neither bipyridine nor DFO could donate iron to the fetus as efficiently as transferrin. The mechanism involved was further investigated by studying the effect of the chelators on uptake of transferrin-bound iron by placental cells in culture. DFO inhibited iron accumulation more effectively than bipyridine in the cultured cells. The effect was not due to a decrease in the cycling time of the receptor. The results can be explained if the iron is released from the transferrin in intracellular vesicles in the ferrous form, where it may be chelated by bipyridine and prevented from passing to the fetus or converted to the ferric form once it is inside the cell matrix.


2010 ◽  
Vol 9 (5) ◽  
pp. 815-826 ◽  
Author(s):  
Alaina Terzulli ◽  
Daniel J. Kosman

ABSTRACT Multicopper ferroxidases play a vital role in iron metabolism in bacteria, fungi, algae, and mammals. Saccharomyces cerevisiae utilizes a channeling mechanism to couple the ferroxidase activity of Fet3p to Fe3+ transport into the cell by Ftr1p. In contrast, the mechanisms by which mammals couple the ferroxidase reaction to iron trafficking is unclear. The human ferroxidases ceruloplasmin and hephaestin are twice the size of Fet3p and interact with proteins that are not expressed in fungi. Chlamydomonas FOX1 is a homolog of the human ferroxidases but likely supports iron uptake in a manner similar to that of yeast, since Chlamydomonas reinhardtii expresses a ferric iron permease homolog, FTR1. The results presented support this hypothesis. We show that FOX1 is trafficked to the plasma membrane and is oriented with its multicopper oxidase/ferroxidase domain in the exocytoplasmic space. Our analysis of FTR1 indicates its topology is similar to that of S. cerevisiae Ftr1p, with a potential exocytoplasmic iron channeling motif and two potential iron permeation motifs in membrane-spanning regions. We demonstrate that high-affinity iron uptake is dependent on FOX1 and the copper status of the cell. Kinetic inhibition of high-affinity iron uptake by a ferric iron chelator does not reflect the strength of the chelator, supporting a ferric iron channeling mechanism for high-affinity iron uptake in Chlamydomonas. Last, recombinant FOX1 (rFOX1) has been isolated in a partially holo form that exhibits the UV-visible absorbance spectrum of a multicopper oxidase and the catalytic activity of a ferroxidase.


1993 ◽  
Vol 13 (7) ◽  
pp. 4342-4350
Author(s):  
D G Roman ◽  
A Dancis ◽  
G J Anderson ◽  
R D Klausner

We have identified a cell surface ferric reductase activity in the fission yeast Schizosaccharomyces pombe. A mutant strain deficient in this activity was also deficient in ferric iron uptake, while ferrous iron uptake was not impaired. Therefore, reduction is a required step in cellular ferric iron acquisition. We have cloned frp1+, the wild-type allele of the mutant gene. frp1+ mRNA levels were repressed by iron addition to the growth medium. Fusion of 138 nucleotides of frp1+ promoter sequences to a reporter gene, the bacterial chloramphenicol acetyltransferase gene, conferred iron-dependent regulation upon the latter when introduced into S. pombe. The predicted amino acid sequence of the frp1+ gene exhibits hydrophobic regions compatible with transmembrane domains. It shows similarity to the Saccharomyces cerevisiae FRE1 gene product and the gp91-phox protein, a component of the human NADPH phagocyte oxidoreductase that is deficient in X-linked chronic granulomatous disease.


2013 ◽  
Vol 81 (11) ◽  
pp. 4182-4191 ◽  
Author(s):  
Huaixin Zheng ◽  
Christa H. Chatfield ◽  
Mark R. Liles ◽  
Nicholas P. Cianciotto

ABSTRACTIron acquisition is critical to the growth and virulence ofLegionella pneumophila. Previously, we found thatL. pneumophilauses both a ferrisiderophore pathway and ferrous iron transport to obtain iron. We now report that two molecules secreted byL. pneumophila, homogentisic acid (HGA) and its polymerized variant (HGA-melanin, a pyomelanin), are able to directly mediate the reduction of various ferric iron salts. Furthermore, HGA, synthetic HGA-melanin, and HGA-melanin derived from bacterial supernatants enhanced the ability ofL. pneumophilaand other species ofLegionellato take up radiolabeled iron. Enhanced iron uptake was not observed with a ferrous iron transport mutant. Thus, HGA and HGA-melanin mediate ferric iron reduction, with the resulting ferrous iron being available to the bacterium for uptake. Upon further testing ofL. pneumophilaculture supernatants, we found that significant amounts of ferric and ferrous iron were associated with secreted HGA-melanin. Importantly, a pyomelanin-containing fraction obtained from a wild-type culture supernatant was able to stimulate the growth of iron-starved legionellae. That the corresponding supernatant fraction obtained from a nonpigmented mutant culture did not stimulate growth demonstrated that HGA-melanin is able to both promote iron uptake and enhance growth under iron-limiting conditions. Indicative of a complementary role in iron acquisition, HGA-melanin levels were inversely related to the levels of siderophore activity. Compatible with a role in the ecology and pathogenesis ofL. pneumophila, HGA and HGA-melanin were effective at reducing and releasing iron from both insoluble ferric hydroxide and the mammalian iron chelates ferritin and transferrin.


Microbiology ◽  
2009 ◽  
Vol 155 (1) ◽  
pp. 305-315 ◽  
Author(s):  
Bryan Marshall ◽  
Alain Stintzi ◽  
Christie Gilmour ◽  
Jean-Marie Meyer ◽  
Keith Poole

In an attempt to identify components of a ferric citrate uptake system in Pseudomonas aeruginosa, a mutant library of a siderophore-deficient strain (IA614) was constructed and screened for defects in citrate-promoted growth in an Fe-restricted medium. A mutant disrupted in gene PA3901, encoding a homologue of the outer-membrane ferric citrate receptor, FecA, of Escherichia coli (FecAE.c.), was recovered and shown to be deficient in citrate-promoted growth and citrate-mediated Fe uptake. A mutant disrupted in gene PA4825, encoding a homologue of the MgtA/MgtB Mg2+ transporters in Salmonella enterica, was similarly deficient in citrate-promoted growth, though this was due to a citrate sensitivity of the mutant apparently resulting from citrate-promoted acquisition of Fe2+ and resultant oxidative stress. Consistent with citrate delivering Fe to cells as Fe2+, a P. aeruginosa mutant lacking the FeoB Fe2+ transporter homologue, PA4358, was compromised for citrate-promoted growth in Fe-restricted medium and showed markedly reduced citrate-mediated Fe uptake. Subsequent elimination of two Fe3+ transporter homologues, PA5216 and PA4687, in the feoB mutant failed to further compromise citrate-promoted growth or Fe uptake, though the additional loss of pcoA, encoding a periplasmic ferroxidase implicated in Fe2+ acquisition, completely abrogated citrate-mediated Fe uptake. Fe acquisition mediated by other siderophores (e.g. pyoverdine) was, however, unaffected in the quadruple knockout strain. These data indicate that Fe delivered to P. aeruginosa by citrate is released as Fe2+, probably in the periplasm, prior to its transport into cells via Fe transport components.


1999 ◽  
Vol 26 (6) ◽  
pp. 601 ◽  
Author(s):  
Elena B. González-Vallejo ◽  
Anunciación Abadía ◽  
Jose Antonio González-Reyes ◽  
Javier Abadía ◽  
Ana Flor López-Millán ◽  
...  

The ferric chelate reductase activities of leaf plasma membranes isolated from the leaves of Fe-deficient and Fe-sufficient sugar beet have been characterized. Substrates used were the complexes of ferric iron with ethylene diamine tetraacetic acid, citric acid and malic acid. Iron deficiency was associated with 1.5- to 2-fold increases in leaf plasma membrane ferric chelate reductase activity when rates were calculated on a protein basis. The natural complexes of ferric iron with citrate and especially with malate were good substrates for the ferric chelate reductase enzyme present in leaf plasma membrane preparations. The apparent affinities were higher for the ferric malate complex. The optimal pH for the activity of the ferric chelate reductase in sugar beet leaf plasma membranes was in the range 6.5–7.0. The ferric chelate reductase activity decreased by approximately 30% when the assay pH was decreased to 5.8 or increased to 7.5. Therefore, our data provide evidence against the hypothesis that changes in apoplastic pH could decrease markedly the activity of the ferric chelate reductase enzyme in plasma membrane preparations from the leaves of Fe-deficient plants.


1993 ◽  
Vol 13 (7) ◽  
pp. 4342-4350 ◽  
Author(s):  
D G Roman ◽  
A Dancis ◽  
G J Anderson ◽  
R D Klausner

We have identified a cell surface ferric reductase activity in the fission yeast Schizosaccharomyces pombe. A mutant strain deficient in this activity was also deficient in ferric iron uptake, while ferrous iron uptake was not impaired. Therefore, reduction is a required step in cellular ferric iron acquisition. We have cloned frp1+, the wild-type allele of the mutant gene. frp1+ mRNA levels were repressed by iron addition to the growth medium. Fusion of 138 nucleotides of frp1+ promoter sequences to a reporter gene, the bacterial chloramphenicol acetyltransferase gene, conferred iron-dependent regulation upon the latter when introduced into S. pombe. The predicted amino acid sequence of the frp1+ gene exhibits hydrophobic regions compatible with transmembrane domains. It shows similarity to the Saccharomyces cerevisiae FRE1 gene product and the gp91-phox protein, a component of the human NADPH phagocyte oxidoreductase that is deficient in X-linked chronic granulomatous disease.


Blood ◽  
1976 ◽  
Vol 48 (1) ◽  
pp. 77-85 ◽  
Author(s):  
DM Williams ◽  
D Loukopoulos ◽  
GR Lee ◽  
GE Cartwright

Abstract Heme synthesis by copper-deficient cells was investigated to elucidate the nature of the defect in intracellular iron metabolism. Iron uptake from transferrin by copper-deficient reticulocytes was 52% of normal, and the rate of heme synthesis was 33% of normal. Hepatic mitochondria isolated from copper-deficient animals were deficient in cytochrome oxidase activity and failed to synthesize heme from ferric iron (Fe III) and protoporphyrin at the normal rate. The rate of heme synthesis correlated with the cytochrome oxidase activity. Heme synthesis from Fe(III) and protoporphyrin by normal mitochondria was enhanced by succinate and inhibited by malonate, antimycin A, azide, and cyanide. It is proposed that an intact electron transport system is required for the reduction of Fe(III), thereby providing a pool of ferrous iron (Fe II) for protoheme and heme a synthesis.


2013 ◽  
Vol 195 (21) ◽  
pp. 4826-4835 ◽  
Author(s):  
E. A. Weaver ◽  
E. E. Wyckoff ◽  
A. R. Mey ◽  
R. Morrison ◽  
S. M. Payne

Sign in / Sign up

Export Citation Format

Share Document