scholarly journals Secreted Pyomelanin of Legionella pneumophila Promotes Bacterial Iron Uptake and Growth under Iron-Limiting Conditions

2013 ◽  
Vol 81 (11) ◽  
pp. 4182-4191 ◽  
Author(s):  
Huaixin Zheng ◽  
Christa H. Chatfield ◽  
Mark R. Liles ◽  
Nicholas P. Cianciotto

ABSTRACTIron acquisition is critical to the growth and virulence ofLegionella pneumophila. Previously, we found thatL. pneumophilauses both a ferrisiderophore pathway and ferrous iron transport to obtain iron. We now report that two molecules secreted byL. pneumophila, homogentisic acid (HGA) and its polymerized variant (HGA-melanin, a pyomelanin), are able to directly mediate the reduction of various ferric iron salts. Furthermore, HGA, synthetic HGA-melanin, and HGA-melanin derived from bacterial supernatants enhanced the ability ofL. pneumophilaand other species ofLegionellato take up radiolabeled iron. Enhanced iron uptake was not observed with a ferrous iron transport mutant. Thus, HGA and HGA-melanin mediate ferric iron reduction, with the resulting ferrous iron being available to the bacterium for uptake. Upon further testing ofL. pneumophilaculture supernatants, we found that significant amounts of ferric and ferrous iron were associated with secreted HGA-melanin. Importantly, a pyomelanin-containing fraction obtained from a wild-type culture supernatant was able to stimulate the growth of iron-starved legionellae. That the corresponding supernatant fraction obtained from a nonpigmented mutant culture did not stimulate growth demonstrated that HGA-melanin is able to both promote iron uptake and enhance growth under iron-limiting conditions. Indicative of a complementary role in iron acquisition, HGA-melanin levels were inversely related to the levels of siderophore activity. Compatible with a role in the ecology and pathogenesis ofL. pneumophila, HGA and HGA-melanin were effective at reducing and releasing iron from both insoluble ferric hydroxide and the mammalian iron chelates ferritin and transferrin.

2002 ◽  
Vol 70 (10) ◽  
pp. 5659-5669 ◽  
Author(s):  
Marianne Robey ◽  
Nicholas P. Cianciotto

ABSTRACT In order to determine the role of ferrous iron transport in Legionella pathogenesis, we identified and mutated the feoB gene in virulent Legionella pneumophila strain 130b. As it is in Escherichia coli, the L. pneumophila feoB gene was contained within a putative feoAB operon. L. pneumophila feoB insertion mutants exhibited decreased ferrous but not ferric iron uptake compared to the wild type. Growth on standard buffered charcoal yeast extract agar or buffered yeast extract broth was unaffected by the loss of L. pneumophila FeoB. However, the L. pneumophila feoB mutant had a reduced ability to grow on buffered charcoal yeast extract agar with a reduced amount of its usual iron supplementation, a phenotype that could be complemented by the addition of feoB in trans. In unsupplemented buffered yeast extract broth, the feoB mutant also had a growth defect, which was further exacerbated by the addition of the ferrous iron chelator, 2,2′-dipyridyl. The feoB mutant was also 2.5 logs more resistant to streptonigrin than wild-type 130b, confirming its decreased ability to acquire iron during extracellular growth. Decreased replication of the feoB mutant was noted within iron-depleted Hartmannella vermiformis amoebae and human U937 cell macrophages. The reduced intracellular infectivity of the feoB mutant was complemented by the introduction of a plasmid containing feoAB. The L. pneumophila feoB gene conferred a modest growth advantage for the wild type over the mutant in a competition assay within the lungs of A/J mice. Taken together, these results indicate that L. pneumophila FeoB is a ferrous iron transporter that is important for extracellular and intracellular growth, especially in iron-limited environments. These data represent the first evidence for the importance of ferrous iron transport for intracellular replication by a human pathogen.


2001 ◽  
Vol 183 (9) ◽  
pp. 2779-2784 ◽  
Author(s):  
Hirokazu Katoh ◽  
Natsu Hagino ◽  
Arthur R. Grossman ◽  
Teruo Ogawa

ABSTRACT Genes encoding polypeptides of an ATP binding cassette (ABC)-type ferric iron transporter that plays a major role in iron acquisition inSynechocystis sp. strain PCC 6803 were identified. These genes are slr1295, slr0513, slr0327, and recently reportedsll1878 (Katoh et al., J. Bacteriol. 182:6523–6524, 2000) and were designated futA1, futA2, futB, andfutC, respectively, for their involvement in ferric iron uptake. Inactivation of these genes individually or futA1and futA2 together greatly reduced the activity of ferric iron uptake in cells grown in complete medium or iron-deprived medium. All the fut genes are expressed in cells grown in complete medium, and expression was enhanced by iron starvation. ThefutA1 and futA2 genes appear to encode periplasmic proteins that play a redundant role in iron binding. The deduced products of futB and futC genes contain nucleotide-binding motifs and belong to the ABC transporter family of inner-membrane-bound and membrane-associated proteins, respectively. These results and sequence similarities among the four genes suggest that the Fut system is related to the Sfu/Fbp family of iron transporters. Inactivation of slr1392, a homologue offeoB in Escherichia coli, greatly reduced the activity of ferrous iron transport. This system is induced by intracellular low iron concentrations that are achieved in cells exposed to iron-free medium or in the fut-less mutants grown in complete medium.


Metallomics ◽  
2018 ◽  
Vol 10 (7) ◽  
pp. 887-898 ◽  
Author(s):  
Alexandrea E. Sestok ◽  
Richard O. Linkous ◽  
Aaron T. Smith

The ferrous iron transport (Feo) system is the predominant mode of bacterial Fe2+import. Advancements in the structure and function of FeoB provide glimpses into the mechanism of Fe2+uptake.


2017 ◽  
Vol 199 (12) ◽  
Author(s):  
Eric D. Peng ◽  
Shelley M. Payne

ABSTRACT Vibrio cholerae is the causative agent of the severe diarrheal disease cholera. V. cholerae thrives within the human host, where it replicates to high numbers, but it also persists within the aquatic environments of ocean and brackish water. To survive within these nutritionally diverse environments, V. cholerae must encode the necessary tools to acquire the essential nutrient iron in all forms it may encounter. A prior study of systems involved in iron transport in V. cholerae revealed the existence of vciB, which, while unable to directly transport iron, stimulates the transport of iron through ferrous (Fe2+) iron transport systems. We demonstrate here a role for VciB in V. cholerae in which VciB stimulates the reduction of Fe3+ to Fe2+, which can be subsequently transported into the cell with the ferrous iron transporter Feo. Iron reduction is independent of functional iron transport but is associated with the electron transport chain. Comparative analysis of VciB orthologs suggests a similar role for other proteins in the VciB family. Our data indicate that VciB is a dimer located in the inner membrane with three transmembrane segments and a large periplasmic loop. Directed mutagenesis of the protein reveals two highly conserved histidine residues required for function. Taken together, our results support a model whereby VciB reduces ferric iron using energy from the electron transport chain. IMPORTANCE Vibrio cholerae is a prolific human pathogen and environmental organism. The acquisition of essential nutrients such as iron is critical for replication, and V. cholerae encodes a number of mechanisms to use iron from diverse environments. Here, we describe the V. cholerae protein VciB that increases the reduction of oxidized ferric iron (Fe3+) to the ferrous form (Fe2+), thus promoting iron acquisition through ferrous iron transporters. Analysis of VciB orthologs in Burkholderia and Aeromonas spp. suggest that they have a similar activity, allowing a functional assignment for this previously uncharacterized protein family. This study builds upon our understanding of proteins known to mediate iron reduction in bacteria.


2016 ◽  
Vol 198 (7) ◽  
pp. 1160-1170 ◽  
Author(s):  
Begoña Stevenson ◽  
Elizabeth E. Wyckoff ◽  
Shelley M. Payne

ABSTRACTFeo is the major ferrous iron transport system in prokaryotes. Despite having been discovered over 25 years ago and found to be widely distributed among bacteria, Feo is poorly understood, as its structure and mechanism of iron transport have not been determined. Thefeooperon inVibrio choleraeis made up of three genes, encoding the FeoA, FeoB, and FeoC proteins, which are all required for Feo system function. FeoA and FeoC are both small cytoplasmic proteins, and their function remains unclear. FeoB, which is thought to function as a ferrous iron permease, is a large integral membrane protein made up of an N-terminal GTPase domain and a C-terminal membrane-spanning region. To date, structural studies of FeoB have been carried out using a truncated form of the protein encompassing only the N-terminal GTPase region. In this report, we show that full-length FeoB forms higher-order complexes when cross-linkedin vivoinV. cholerae. Our analysis of these complexes revealed that FeoB can simultaneously associate with both FeoA and FeoC to form a large complex, an observation that has not been reported previously. We demonstrate that interactions between FeoB and FeoA, but not between FeoB and FeoC, are required for complex formation. Additionally, we identify amino acid residues in the GTPase region of FeoB that are required for function of the Feo system and for complex formation. These observations suggest that this large Feo complex may be the active form of Feo that is used for ferrous iron transport.IMPORTANCEThe Feo system is the major route for ferrous iron transport in bacteria. In this work, theVibrio choleraeFeo proteins, FeoA, FeoB, and FeoC, are shown to interact to form a large inner membrane complexin vivo. This is the first report showing an interaction among all three Feo proteins. It is also determined that FeoA, but not FeoC, is required for Feo complex assembly.


mBio ◽  
2022 ◽  
Author(s):  
Camilo Gómez-Garzón ◽  
Jeffrey E. Barrick ◽  
Shelley M. Payne

Feo, a ferrous iron transport system composed of three proteins (FeoA, -B, and -C), is the most prevalent bacterial iron transporter. It plays an important role in iron acquisition in low-oxygen environments and some host-pathogen interactions.


1987 ◽  
Vol 252 (5) ◽  
pp. C477-C482 ◽  
Author(s):  
C. T. Wong ◽  
H. J. McArdle ◽  
E. H. Morgan

The uptake of radiolabelled transferrin and iron by the rat placenta has been studied using two approaches. The first involved injection of a ferrous or ferric iron chelator followed by injection of label. Neither chelator decreased the amount of labelled transferrin in the placenta after 2-h incubation and only bipyridine, a ferrous iron chelator, inhibited iron transport to the fetus. Deferoxamine (DFO), a ferric iron chelator, had no effect on iron transport to the fetus but reduced iron uptake by the liver. Both bipyridine and DFO increased iron excretion into the gut and by the urinary tract to the same degree into the gut, but there was a 10-fold greater urinary excretion with bipyridine than with DFO. Injection of iron attached to the chelators showed that neither bipyridine nor DFO could donate iron to the fetus as efficiently as transferrin. The mechanism involved was further investigated by studying the effect of the chelators on uptake of transferrin-bound iron by placental cells in culture. DFO inhibited iron accumulation more effectively than bipyridine in the cultured cells. The effect was not due to a decrease in the cycling time of the receptor. The results can be explained if the iron is released from the transferrin in intracellular vesicles in the ferrous form, where it may be chelated by bipyridine and prevented from passing to the fetus or converted to the ferric form once it is inside the cell matrix.


2016 ◽  
Vol 199 (1) ◽  
Author(s):  
Emily M. Roy ◽  
Kevin L. Griffith

ABSTRACT Iron is an essential micronutrient required for the viability of many organisms. Under oxidizing conditions, ferric iron is highly insoluble (∼10−9 to 10−18 M), yet bacteria typically require ∼10−6 M for survival. To overcome this disparity, many bacteria have adopted the use of extracellular iron-chelating siderophores coupled with specific iron-siderophore uptake systems. In the case of Bacillus subtilis, undomesticated strains produce the siderophore bacillibactin. However, many laboratory strains, e.g., JH642, have lost the ability to produce bacillibactin during the process of domestication. In this work, we identified a novel iron acquisition activity from strain JH642 that accumulates in the growth medium and coordinates the iron response with population density. The molecule(s) responsible for this activity was named elemental Fe(II/III) (Efe) acquisition factor because efeUOB (ywbLMN) is required for its activity. Unlike most iron uptake molecules, including siderophores and iron reductases, Efe acquisition factor is present under iron-replete conditions and is regulated independently of Fur repressor. Restoring bacillibactin production in strain JH642 inhibits the activity of Efe acquisition factor, presumably by sequestering available iron. A similar iron acquisition activity is produced from a mutant of Escherichia coli unable to synthesize the siderophore enterobactin. Given the conservation of efeUOB and its regulation by catecholic siderophores in B. subtilis and E. coli, we speculate that Efe acquisition factor is utilized by many bacteria, serves as an alternative to Fur-mediated iron acquisition systems, and provides cells with biologically available iron that would normally be inaccessible during aerobic growth under iron-replete conditions. IMPORTANCE Iron is an essential micronutrient required for a variety of biological processes, yet ferric iron is highly insoluble during aerobic growth. In this work, we identified a novel iron acquisition activity that coordinates the iron response with population density in laboratory strains of Bacillus subtilis. We named the molecule(s) responsible for this activity elemental Fe(II/III) (Efe) acquisition factor after the efeUOB (ywbLMN) operon required for its uptake into cells. Unlike most iron uptake systems, Efe acquisition factor is present under iron-replete conditions and is regulated independently of Fur, the master regulator of the iron response. We speculate that Efe acquisition factor is highly conserved among bacteria and serves as a backup to Fur-mediated iron acquisition systems.


1993 ◽  
Vol 13 (7) ◽  
pp. 4342-4350
Author(s):  
D G Roman ◽  
A Dancis ◽  
G J Anderson ◽  
R D Klausner

We have identified a cell surface ferric reductase activity in the fission yeast Schizosaccharomyces pombe. A mutant strain deficient in this activity was also deficient in ferric iron uptake, while ferrous iron uptake was not impaired. Therefore, reduction is a required step in cellular ferric iron acquisition. We have cloned frp1+, the wild-type allele of the mutant gene. frp1+ mRNA levels were repressed by iron addition to the growth medium. Fusion of 138 nucleotides of frp1+ promoter sequences to a reporter gene, the bacterial chloramphenicol acetyltransferase gene, conferred iron-dependent regulation upon the latter when introduced into S. pombe. The predicted amino acid sequence of the frp1+ gene exhibits hydrophobic regions compatible with transmembrane domains. It shows similarity to the Saccharomyces cerevisiae FRE1 gene product and the gp91-phox protein, a component of the human NADPH phagocyte oxidoreductase that is deficient in X-linked chronic granulomatous disease.


Sign in / Sign up

Export Citation Format

Share Document