scholarly journals Modulation of hepatic apolipoprotein B, 3-hydroxy-3-methylglutaryl-CoA reductase and low-density lipoprotein receptor mRNA and plasma lipoprotein concentrations by defined dietary fats. Comparison of trimyristin, tripalmitin, tristearin and triolein

1995 ◽  
Vol 311 (1) ◽  
pp. 167-173 ◽  
Author(s):  
A J Bennett ◽  
M A Billett ◽  
A M Salter ◽  
E H Mangiapane ◽  
J S Bruce ◽  
...  

Different dietary fatty acids exert specific effects on plasma lipids but the mechanism by which this occurs is unknown. Hamsters were fed on low-cholesterol diets containing triacylglycerols enriched in specific saturated fatty acids, and effects on plasma lipids and the expression of genes involved in hepatic lipoprotein metabolism were measured. Trimyristin and tripalmitin caused significant rises in low-density lipoprotein (LDL) cholesterol which were accompanied by significant reductions in hepatic LDL receptor mRNA levels. Tripalmitin also increased hepatic expression of the apolipoprotein B gene, implying an increased production of LDL via very-low-density lipoprotein (VLDL) and decreased removal of LDL in animals fed this fat. Hepatic levels of 3-hydroxy-3-methylglutaryl-CoA reductase mRNA did not vary significantly between the groups. Compared with triolein, tristearin had little effect on hepatic gene expression or total plasma cholesterol. However, it caused a marked decrease in VLDL cholesterol and a rise in LDL cholesterol such that overall it appeared to be neutral. Lipid analysis suggested a rapid desaturation of much of the dietary stearate. The differential changes in plasma lipids and hepatic mRNA levels induced by specific dietary fats suggests a role for fatty acids or a metabolite thereof in the regulation of the expression of genes involved in lipoprotein metabolism.

1992 ◽  
Vol 82 (6) ◽  
pp. 701-708 ◽  
Author(s):  
G. L. Warwick ◽  
C. J. Packard ◽  
L. Murray ◽  
D. Grierson ◽  
J. P. Stewart ◽  
...  

1. The effect of inhibiting the rate-limiting enzyme (3-hydroxy-3-methylglutaryl-CoA reductase, EC 1.1.1.88) in cholesterol synthesis on plasma lipid and lipoprotein concentrations was investigated in 16 patients with primary glomerular disease, heavy proteinuria, well-preserved renal function and hypercholesterolaemia. 2. Detailed studies of low-density lipoprotein metabolism were performed on eight patients before and after 12 weeks of simvastatin therapy. Radioiodinated tracers were used to quantify the fractional catabolic rate of low-density lipoprotein by apolipoprotein B/E receptors and alternative pathways. 3. Simvastatin produced consistent reductions in total plasma cholesterol concentration (median 36.9%), plasma low-density lipoprotein-cholesterol concentration (43.6%) and apolipoprotein B pool size (29.9%). 4. In contrast, the changes in kinetic parameters of low-density lipoprotein metabolism showed no clear pattern. Although an increase in the receptor-mediated catabolism of low-density lipoprotein was demonstrated in five patients, no change or a slight decrease was seen in three patients. Production rates were not significantly altered, although there was a slight decrease in the median value (from 12.4 to 9.7 mg day−1 kg−1). Plasma lathosterol concentration was reduced in all eight patients (range 34–71%), indirectly confirming significant inhibition of cholesterol synthesis. 5. These results suggest that, as in patients with primary moderate hyperlipidaemia, the significant cholesterol-lowering effect of 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors in the nephrotic syndrome is accompanied by variable changes in lipoprotein metabolism. The reasons for this heterogeneous response are unclear. This reflects our limited understanding of the metabolic basis of nephrotic hyperlipidaemia and the relationship between hepatic sterol synthesis and plasma lipoprotein kinetics.


Sign in / Sign up

Export Citation Format

Share Document