scholarly journals Molecular cloning, sequencing and expression of the cDNA of the mitochondrial form of phosphoenolpyruvate carboxykinase from human liver

1996 ◽  
Vol 315 (3) ◽  
pp. 807-814 ◽  
Author(s):  
Said MODARESSI ◽  
Bruno CHRIST ◽  
Jutta BRATKE ◽  
Stefan ZAHN ◽  
Tilman HEISE ◽  
...  

In human liver, phosphoenolpyruvate carboxykinase (PCK; EC 4.1.1.32) is about equally distributed between cytosol and mitochondria in contrast with rat liver in which it is essentially a cytosolic enzyme. Recently, the isolation of the gene and cDNA of the human cytosolic enzyme has been reported [Ting, Burgess, Chamberlain, Keith, Falls and Meisler (1993) Genomics 16, 698–706; Stoffel, Xiang, Espinosa, Cox, Le Beau and Bell (1993) Hum. Mol. Genet. 2, 1–4]. It was the goal of this investigation to isolate the cDNA of the human mitochondrial form of hepatic PCK. A human liver cDNA library was screened with a rat cytosolic PCK cDNA probe comprising sequences from exons 2 to 9. A cDNA clone was isolated which had overall a 68% DNA sequence and a 70% deduced amino acid sequence identity with the human cytosolic PCK cDNA. Without the flanking 270 bases (=90 amino acids) each at the 5´ and 3´ end, the sequence identity was 73% on the DNA and 78% on the amino acid level. The isolated cDNA had an open reading frame of 1920 bp; it was 54 bp (equivalent to 18 amino acids) longer than that of human or rat cytosolic PCK cDNA. The isolated cDNA was cloned into the eukaryotic expression vector pcDNAI and transfected into human embryonal kidney cells HEK293; PCK activity was increased by 3-fold in the mitochondria, which normally contain 70% of total PCK activity, but not in the cytosol. The isolated cDNA was also transfected into cultured rat hepatocytes; again, PCK activity was enhanced by about 40-fold in the mitochondria, which normally possess only 10% of total PCK activity, but not in the cytosol. In the rat hepatocytes only the endogenous cytosolic PCK and not the transfected mitochondrial PCK was induced 3-fold with glucagon. Comparison of the amino acid sequences deduced from the isolated cDNA with human and rat cytosolic PCK showed that the additional 18 amino acids were located at the N-terminus of the protein and probably constitute a mitochondrial targeting signal. Northern-blot analyses revealed the human mitochondrial PCK mRNA to be 2.25 kb long, about 0.6 kb shorter than the mRNA of the cytosolic PCK. Primer extension experiments showed that the 5´-untranslated region of mitochondrial PCK mRNA was 134 nucleotides in length.

2018 ◽  
Author(s):  
Jianhao Cao ◽  
Shuhong Luo ◽  
Yuanyan Xiong

AbstractHepatitis B virus (HBV) is an important human pathogen belonging to theHepadnaviridaefamily,Orthohepadnavirusgenus. It infects over 240 million people globally. The reverse transcription during its genome replication leads to low fidelity DNA synthesis, which is the source of variability in the viral proteins. To investigate the variability quantitatively, we retrieved amino acid sequences of 5167 records of all available HBV genotypes (A-J) from the Genbank database. The amino acid sequences encoded by the open reading frames (ORF) S/C/P/X in the HBV genome were extracted and subjected to alignment respectively. We analyzed the variability of the lengths and the sequences of proteins as well as the frequencies of amino acids. Our study comprehensively characterized of the variability and conservation of HBV at the level of amino acids, especially for the structural proteins, hepatitis B surface antigens (HBsAg), to find out the potential sites critical for virus assembly and immune recognition. Interestingly, the preS1/S2 domains in HBsAg were variable at some positions of amino acid residues, which provides a potential mechanism of immune-escape for HBV, while the preS2 and S domains were conserved in the lengths of protein sequences. In the S domain, the cysteine residues and the secondary structures of the alpha-helix and beta-sheet were likely critical for the stable folding of the protein structure. The preC domain and C-terminal domain (CTD) of the core protein are highly conserved. And the polymerases HBpol and the HBx were highly variable at the amino acid level.


2021 ◽  
Vol 22 (3) ◽  
pp. 1018
Author(s):  
Hiroaki Yokota

Helicases are nucleic acid-unwinding enzymes that are involved in the maintenance of genome integrity. Several parts of the amino acid sequences of helicases are very similar, and these quite well-conserved amino acid sequences are termed “helicase motifs”. Previous studies by X-ray crystallography and single-molecule measurements have suggested a common underlying mechanism for their function. These studies indicate the role of the helicase motifs in unwinding nucleic acids. In contrast, the sequence and length of the C-terminal amino acids of helicases are highly variable. In this paper, I review past and recent studies that proposed helicase mechanisms and studies that investigated the roles of the C-terminal amino acids on helicase and dimerization activities, primarily on the non-hexermeric Escherichia coli (E. coli) UvrD helicase. Then, I center on my recent study of single-molecule direct visualization of a UvrD mutant lacking the C-terminal 40 amino acids (UvrDΔ40C) used in studies proposing the monomer helicase model. The study demonstrated that multiple UvrDΔ40C molecules jointly participated in DNA unwinding, presumably by forming an oligomer. Thus, the single-molecule observation addressed how the C-terminal amino acids affect the number of helicases bound to DNA, oligomerization, and unwinding activity, which can be applied to other helicases.


2000 ◽  
Vol 17 (6) ◽  
pp. 847-854 ◽  
Author(s):  
JAMES C. RYAN ◽  
SERGEY ZNOIKO ◽  
LIN XU ◽  
ROSALIE K. CROUCH ◽  
JIAN-XING MA

The mammalian retina is known to contain two distinct transducins that interact with their respective rod and cone pigments. However, there are no reports of a nonmammalian species having two distinct transducins. In the present study, we report the cloning and cellular localization of two transducin α subunits (Gαt) from the tiger salamander. Through degenerate polymerase chain reaction (PCR) and subsequent screening of a salamander retina cDNA library, we have identified two forms of Gαt. When compared to existing sequences in GenBank, the cloned subunits showed high similarity to rod and cone transducins. The salamander Gαt-1 has 91.2–93.7% amino acid sequence identity to mammalian rod Gαt subunits and 79.7–80.9% to mammalian cone Gαts. The salamander Gαt-2 has 86.2–87.9% sequence identity to mammalian cone Gαts and 78.9–80.9% to mammalian rod Gαts at the amino acid level. The Gαt-1 cDNA encodes 350 amino acids while the Gαt-2 cDNA encodes 354 residues, which is typical for rod and cone Gαts, respectively, and we thus identified the Gαt-1 as rod and Gαt-2 as cone Gαt. Sequences identified as effector binding sites and GTPase activity regions are highly conserved between the two subunits. Genomic Southern blot analysis showed that rod and cone Gαt subunits are both encoded by single-copy genes. Northern blot analysis identified retina-specific transcripts of 3.0 kb for rod Gαt and 2.6 kb for cone Gαt. Immunohistochemistry in the flat-mounted salamander retina demonstrated that rod Gαt is localized to rods, predominantly in the outer segments; similarly, cone Gαt is localized to cone outer segments. The results confirm that the two sequences encode rod and cone transducins and demonstrate that this lower vertebrate contains two distinct transducins that are localized specifically to rod and cone photoreceptors.


1986 ◽  
Vol 6 (3) ◽  
pp. 849-858 ◽  
Author(s):  
C B Shoemaker ◽  
L D Mitsock

The gene for murine erythropoietin (EPO) was isolated from a mouse genomic library with a human EPO cDNA probe. Nucleotide sequence analysis permitted the identification of the murine EPO coding sequence and the prediction of the encoded amino acid sequence based on sequence conservation between the mouse and human EPO genes. Both the coding DNA and the amino acid sequences were 80% conserved between the two species. Transformation of COS-1 cells with a mammalian cell expression vector containing the murine EPO coding region resulted in secretion of murine EPO with biological activity on both murine and human erythroid progenitor cells. The transcription start site for the murine EPO gene in kidneys was determined. This permitted tentative identification of the transcription control region. The region included 140 base pairs upstream of the cap site which was over 90% conserved between the murine and human genes. Surprisingly, the first intron and much of the 5'- and 3'-untranslated sequences were also substantially conserved between the genes of the two species.


1994 ◽  
Vol 299 (2) ◽  
pp. 545-552 ◽  
Author(s):  
Y Deyashiki ◽  
A Ogasawara ◽  
T Nakayama ◽  
M Nakanishi ◽  
Y Miyabe ◽  
...  

Human liver contains two dihydrodiol dehydrogenases, DD2 and DD4, associated with 3 alpha-hydroxysteroid dehydrogenase activity. We have raised polyclonal antibodies that cross-reacted with the two enzymes and isolated two 1.2 kb cDNA clones (C9 and C11) for the two enzymes from a human liver cDNA library using the antibodies. The clones of C9 and C11 contained coding sequences corresponding to 306 and 321 amino acid residues respectively, but lacked 5′-coding regions around the initiation codon. Sequence analyses of several peptides obtained by enzymic and chemical cleavages of the two purified enzymes verified that the C9 and C11 clones encoded DD2 and DD4 respectively, and further indicated that the sequence of DD2 had at least additional 16 residues upward from the N-terminal sequence deduced from the cDNA. There was 82% amino acid sequence identity between the two enzymes, indicating that the enzymes are genetic isoenzymes. A computer-based comparison of the cDNAs of the isoenzymes with the DNA sequence database revealed that the nucleotide and amino acid sequences of DD2 and DD4 are virtually identical with those of human bile-acid binder and human chlordecone reductase cDNAs respectively.


1973 ◽  
Vol 131 (3) ◽  
pp. 485-498 ◽  
Author(s):  
R. P. Ambler ◽  
Margaret Wynn

The amino acid sequences of the cytochromes c-551 from three species of Pseudomonas have been determined. Each resembles the protein from Pseudomonas strain P6009 (now known to be Pseudomonas aeruginosa, not Pseudomonas fluorescens) in containing 82 amino acids in a single peptide chain, with a haem group covalently attached to cysteine residues 12 and 15. In all four sequences 43 residues are identical. Although by bacteriological criteria the organisms are closely related, the differences between pairs of sequences range from 22% to 39%. These values should be compared with the differences in the sequence of mitochondrial cytochrome c between mammals and amphibians (about 18%) or between mammals and insects (about 33%). Detailed evidence for the amino acid sequences of the proteins has been deposited as Supplementary Publication SUP 50015 at the National Lending Library for Science and Technology, Boston Spa, Yorks. LS23 7BQ, U.K., from whom copies can be obtained on the terms indicated in Biochem. J. (1973), 131, 5.


2001 ◽  
Vol 75 (17) ◽  
pp. 8127-8136 ◽  
Author(s):  
Daniel R. Perez ◽  
Ruben O. Donis

ABSTRACT Influenza A virus expresses three viral polymerase (P) subunits—PB1, PB2, and PA—all of which are essential for RNA and viral replication. The functions of P proteins in transcription and replication have been partially elucidated, yet some of these functions seem to be dependent on the formation of a heterotrimer for optimal viral RNA transcription and replication. Although it is conceivable that heterotrimer subunit interactions may allow a more efficient catalysis, direct evidence of their essentiality for viral replication is lacking. Biochemical studies addressing the molecular anatomy of the P complexes have revealed direct interactions between PB1 and PB2 as well as between PB1 and PA. Previous studies have shown that the N-terminal 48 amino acids of PB1, termed domain α, contain the residues required for binding PA. We report here the refined mapping of the amino acid sequences within this small region of PB1 that are indispensable for binding PA by deletion mutagenesis of PB1 in a two-hybrid assay. Subsequently, we used site-directed mutagenesis to identify the critical amino acid residues of PB1 for interaction with PA in vivo. The first 12 amino acids of PB1 were found to constitute the core of the interaction interface, thus narrowing the previous boundaries of domain α. The role of the minimal PB1 domain α in influenza virus gene expression and genome replication was subsequently analyzed by evaluating the activity of a set of PB1 mutants in a model reporter minigenome system. A strong correlation was observed between a functional PA binding site on PB1 and P activity. Influenza viruses bearing mutant PB1 genes were recovered using a plasmid-based influenza virus reverse genetics system. Interestingly, mutations that rendered PB1 unable to bind PA were either nonviable or severely growth impaired. These data are consistent with an essential role for the N terminus of PB1 in binding PA, P activity, and virus growth.


1986 ◽  
Vol 6 (5) ◽  
pp. 1711-1721
Author(s):  
E M McIntosh ◽  
R H Haynes

The dCMP deaminase gene (DCD1) of Saccharomyces cerevisiae has been isolated by screening a Sau3A clone bank for complementation of the dUMP auxotrophy exhibited by dcd1 dmp1 haploids. Plasmid pDC3, containing a 7-kilobase (kb) Sau3A insert, restores dCMP deaminase activity to dcd1 mutants and leads to an average 17.5-fold overproduction of the enzyme in wild-type cells. The complementing activity of the plasmid was localized to a 4.2-kb PvuII restriction fragment within the Sau3A insert. Subcloning experiments demonstrated that a single HindIII restriction site within this fragment lies within the DCD1 gene. Subsequent DNA sequence analysis revealed a 936-nucleotide open reading frame encompassing this HindIII site. Disruption of the open reading frame by integrative transformation led to a loss of enzyme activity and confirmed that this region constitutes the dCMP deaminase gene. Northern analysis indicated that the DCD1 mRNA is a 1.15-kb poly(A)+ transcript. The 5' end of the transcript was mapped by primer extension and appears to exhibit heterogeneous termini. Comparison of the amino acid sequence of the T2 bacteriophage dCMP deaminase with that deduced for the yeast enzyme revealed a limited degree of homology which extends over the entire length of the phage polypeptide (188 amino acids) but is confined to the carboxy-terminal half of the yeast protein (312 amino acids). A potential dTTP-binding site in the yeast and phage enzymes was identified by comparison of homologous regions with the amino acid sequences of a variety of other dTTP-binding enzymes. Despite the role of dCMP deaminase in dTTP biosynthesis, Northern analysis revealed that the DCD1 gene is not subject to the same cell cycle-dependent pattern of transcription recently found for the yeast thymidylate synthetase gene (TMP1).


1977 ◽  
Vol 162 (2) ◽  
pp. 411-421 ◽  
Author(s):  
S J Yeaman ◽  
P Cohen ◽  
D C Watson ◽  
G H Dixon

The known amino acid sequences at the two sites on phosphorylase kinase that are phosphorylated by cyclic AMP-dependent protein kinase were extended. The sequences of 42 amino acids around the phosphorylation site on the alpha-subunit and of 14 amino acids around the phosphorylation site on the beta-subunit were shown to be: alpha-subunit Phe-Arg-Arg-Leu-Ser(P)-Ile-Ser-Thr-Glu-Ser-Glx-Pro-Asx-Gly-Gly-His-Ser-Leu-Gly-Ala-Asp-Leu-Met-Ser-Pro-Ser-Phe-Leu-Ser-Pro-Gly-Thr-Ser-Val-Phe(Ser,Pro,Gly)His-Thr-Ser-Lys; beta-subunit, Ala-Arg-Thr-Lys-Arg-Ser-Gly-Ser(P)-VALIle-Tyr-Glu-Pro-Leu-Lys. The sites on histone H2B which are phosphorylated by cyclic AMP-dependent protein kinase in vitro were identified as serine-36 and serine-32. The amino acid sequence in this region is: Lys-Lys-Arg-Lys-Arg-Ser32(P)-Arg-Lys-Glu-Ser36(P)-Tyr-Ser-Val-Tyr-Val- [Iwai, K., Ishikawa, K. & Hayashi, H. (1970) Nature (London) 226, 1056-1058]. Serine-36 was phosphorylated at 50% of the rate at which the beta-subunit of phosphorylase kinase was phosphorylated, and it was phosphorylated 6-7-fold more rapidly than was serine-32. The amino acid sequences when compared with those at the phosphorylation sites of other physiological substrates suggest that the presence of two adjacent basic amino acids on the N-terminal side of the susceptible serine residue may be critical for specific substrate recognition in vivo.


2004 ◽  
Vol 91 (01) ◽  
pp. 38-42 ◽  
Author(s):  
Christof Geisen ◽  
Erhard Seifried ◽  
Johannes Oldenburg ◽  
Matthias Watzka

SummaryFactorVIII acts as an essential compound of the tenase complex of the coagulation system. Herein we report the cDNA of the rat factor VIII. The rat cDNA comprises 6777 nucleotides and encodes a protein of 2258 amino acids, 61 amino acids less than mouse and 92 amino acids less than human factor VIII. The overall identity compared to human cDNA is 61% on the cDNA and 51% on the amino acid level. In cDNA, highest levels of sequence identity can be observed in the A and C domains (ranging between 68% and 73%), whereas B domain and the small acidic regions are more divergent (34%-49%). Compared to mouse and human most sites for posttranslational modifications such as sulfatation and glycosylation as well as thrombin and protein C cleavage sites are conserved in rat. Alternative transcripts lacking exon 17 and/or comprising additional 26 bp due to alternative splicing of exon 20 were found. Furthermore, 13 polymorphisms (seven in exon 14, one in exon 20, 23, 24, and 25, two in the 3’UTR) three of which lead to an amino acid exchange could be detected. Our findings might provide new insights into the structure-function analysis of the factor VIII protein and might prove useful for future animal models addressing the function of factor VIII.


Sign in / Sign up

Export Citation Format

Share Document