scholarly journals Different species of phosphatidic acid are produced during neuronal growth and neurosecretion

OCL ◽  
2018 ◽  
Vol 25 (4) ◽  
pp. D408 ◽  
Author(s):  
Emeline Tanguy ◽  
Qili Wang ◽  
Pierre Coste de Bagneaux ◽  
Laetitia Fouillen ◽  
Tamou Thahouly ◽  
...  

Although originally restricted to their structural role as major constituents of membranes, lipids are now well-defined actors to integrate intracellular or extracellular signals. Accordingly, it has been known for decades that lipids, especially those coming from diet, are important to maintain normal physiological functions and good health. This is especially the case to maintain proper cognitive functions and avoid neuronal degeneration. But besides this empiric knowledge, the exact molecular nature of lipids in cellular signaling, as well as their precise mode of action are only starting to emerge. The recent development of novel pharmacological, molecular, cellular and genetic tools to study lipids in vitro and in vivo has contributed to this improvement in our knowledge. Among these important lipids, phosphatidic acid (PA) plays a unique and central role in a great variety of cellular functions. This article will review the different findings illustrating the involvement of PA generated by phospholipase D (PLD) and diacylglycerol kinases (DGK) in the different steps of neuronal development and neurosecretion. We will also present lipidomic evidences indicating that different species of PA are synthesized during these two key neuronal phenomena.

2001 ◽  
Vol 360 (3) ◽  
pp. 707-715 ◽  
Author(s):  
Trevor R. PETTITT ◽  
Mark McDERMOTT ◽  
Khalid M. SAQIB ◽  
Neil SHIMWELL ◽  
Michael J. O. WAKELAM

Mammalian cells contain different phospholipase D enzymes (PLDs) whose distinct physiological roles are poorly understood and whose products have not been characterized. The development of porcine aortic endothelial (PAE) cell lines able to overexpress PLD-1b or −2a under the control of an inducible promoter has enabled us to characterize both the substrate specificity and the phosphatidic acid (PtdOH) product of these enzymes under controlled conditions. Liquid chromatography–MS analysis showed that PLD1b- and PLD2a-transfected PAE cells, as well as COS7 and Rat1 cells, generate similar PtdOH and, in the presence of butan-1-ol, phosphatidylbutanol (PtdBut) profiles, enriched in mono- and di-unsaturated species, in particular 16:0/18:1. Although PtdBut mass increased, the species profile did not change in cells stimulated with ATP or PMA. Overexpression of PLD made little difference to basal or stimulated PtdBut formation, indicating that activity is tightly regulated in vivo and that factors other than just PLD protein levels limit hydrolytic function. In vitro assays using PLD-enriched lysates showed that the enzyme could utilize both phosphatidylcholine and, much less efficiently, phosphatidylethanolamine, with slight selectivity towards mono- and di-unsaturated species. Phosphatidylinositol was not a substrate. Thus PLD1b and PLD2a hydrolyse a structurally similar substrate pool to generate an identical PtdOH product enriched in mono- and di-unsaturated species that we propose to function as the intracellular messenger forms of this lipid.


1997 ◽  
Vol 77 (2) ◽  
pp. 303-320 ◽  
Author(s):  
J. H. Exton

Phospholipase D exists in various forms that differ in their regulation but predominantly hydrolyze phosphatidylcholine. The Ca(2+)-dependent isozymes of protein kinase C regulate phospholipase D in vitro and play a major role in its control by growth factors and G protein-linked agonists in vivo. Recent studies have demonstrated that small G proteins of the ADP-ribosylation factor (ARF) and Rho families activate the enzyme in vitro, and evidence is accumulating that they also are involved in its control in vivo. Both types of G protein play important roles in cellular function, and the possible mechanisms by which they are activated by agonists are discussed. There is also emerging evidence of the control of phospholipase D and Rho proteins by soluble tyrosine kinases and novel serine/threonine kinases. The possible role of these kinases in agonist regulation of phospholipase D is discussed. The function of phospholipase D in cells is still poorly defined. Postulated roles of phosphatidic acid produced by phospholipase D action include the activation of Ca(2+)-independent isoforms of protein kinase C, the regulation of growth and the cytoskeleton in fibroblasts, and control of the respiratory burst in neutrophils. Another important function of phosphatidic acid is to act as a substrate for a specific phospholipase A2 to generate lysophosphatidic acid, which is becoming increasingly recognized as a major intercellular messenger. Finally, it is possible that the phospholipid changes induced in various cellular membranes by phospholipase D may per se play an important role in vesicle trafficking and other membrane-associated events.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Monika Oláhová ◽  
Bradley Peter ◽  
Zsolt Szilagyi ◽  
Hector Diaz-Maldonado ◽  
Meenakshi Singh ◽  
...  

AbstractWhile >300 disease-causing variants have been identified in the mitochondrial DNA (mtDNA) polymerase γ, no mitochondrial phenotypes have been associated with POLRMT, the RNA polymerase responsible for transcription of the mitochondrial genome. Here, we characterise the clinical and molecular nature of POLRMT variants in eight individuals from seven unrelated families. Patients present with global developmental delay, hypotonia, short stature, and speech/intellectual disability in childhood; one subject displayed an indolent progressive external ophthalmoplegia phenotype. Massive parallel sequencing of all subjects identifies recessive and dominant variants in the POLRMT gene. Patient fibroblasts have a defect in mitochondrial mRNA synthesis, but no mtDNA deletions or copy number abnormalities. The in vitro characterisation of the recombinant POLRMT mutants reveals variable, but deleterious effects on mitochondrial transcription. Together, our in vivo and in vitro functional studies of POLRMT variants establish defective mitochondrial transcription as an important disease mechanism.


1999 ◽  
Vol 19 (6) ◽  
pp. 4028-4038 ◽  
Author(s):  
Shen-Hsi Yang ◽  
Alex Galanis ◽  
Andrew D. Sharrocks

ABSTRACT Mitogen-activated protein (MAP) kinase-mediated signalling to the nucleus is an important event in the conversion of extracellular signals into a cellular response. However, the existence of multiple MAP kinases which phosphorylate similar phosphoacceptor motifs poses a problem in maintaining substrate specificity and hence the correct biological response. Both the extracellular signal-regulated kinase (ERK) and c-Jun NH2-terminal kinase (JNK) subfamilies of MAP kinases use a second specificity determinant and require docking to their transcription factor substrates to achieve maximal substrate activation. In this study, we demonstrate that among the different MAP kinases, the MADS-box transcription factors MEF2A and MEF2C are preferentially phosphorylated and activated by the p38 subfamily members p38α and p38β2. The efficiency of phosphorylation in vitro and transcriptional activation in vivo of MEF2A and MEF2C by these p38 subtypes requires the presence of a kinase docking domain (D-domain). Furthermore, the D-domain from MEF2A is sufficient to confer p38 responsiveness on different transcription factors, and reciprocal effects are observed upon the introduction of alternative D-domains into MEF2A. These results therefore contribute to our understanding of signalling to MEF2 transcription factors and demonstrate that the requirement for substrate binding by MAP kinases is an important facet of three different subclasses of MAP kinases (ERK, JNK, and p38).


2010 ◽  
Vol 235 (4) ◽  
pp. 411-423 ◽  
Author(s):  
Katarzyna A Rejniak ◽  
Lisa J McCawley

In its simplest description, a tumor is comprised of an expanding population of transformed cells supported by a surrounding microenvironment termed the tumor stroma. The tumor microcroenvironment has a very complex composition, including multiple types of stromal cells, a dense network of various extracellular matrix (ECM) fibers interpenetrated by the interstitial fluid and gradients of several chemical species that either are dissolved in the fluid or are bound to the ECM structure. In order to study experimentally such complex interactions between multiple players, cancer is dissected and considered at different scales of complexity, such as protein interactions, biochemical pathways, cellular functions or whole organism studies. However, the integration of information acquired from these studies into a common description is as difficult as the disease itself. Computational models of cancer can provide cancer researchers with invaluable tools that are capable of integrating the complexity into organizing principles as well as suggesting testable hypotheses. We will focus in this Minireview on mathematical models in which the whole cell is a main modeling unit. We will present a current stage of such cell-focused mathematical modeling incorporating different stromal components and their interactions with growing tumors, and discuss what modeling approaches can be undertaken to complement the in vivo and in vitro experimentation.


2005 ◽  
Vol 146 (3) ◽  
pp. 344-351 ◽  
Author(s):  
Bruce D Levy ◽  
Lorraine Hickey ◽  
Andrew J Morris ◽  
Mykol Larvie ◽  
Raquel Keledjian ◽  
...  

Development ◽  
1993 ◽  
Vol 119 (3) ◽  
pp. 635-648 ◽  
Author(s):  
S. Wyatt ◽  
A.M. Davies

We have used a quantitative reverse transcription/polymerase chain reaction amplification technique to study the regulation of p75 mRNA and trkA mRNA expression in developing NGF-dependent trigeminal neurons. Before becoming NGF dependent, these neurons express low levels of p75 and trkA mRNAs in vivo. At this stage in vitro, the level of p75 mRNA is maintained and up-regulated by BDNF, whereas the level of trkA mRNA is sustained independently of neurotrophins and is down-regulated by BDNF. With the acquisition of NGF dependence, p75 and trkA mRNA levels increase markedly in vivo. At this stage in vitro, the level of p75 mRNA is up-regulated by NGF, but this response is lost at later stages. The level of trkA mRNA is sustained in neurons grown with NGF but is not up-regulated by concentrations of NGF above those required to support survival. At no stage during the early development of trigeminal neurons do depolarising levels of potassium ions affect the expression of either p75 mRNA or trkA mRNA. These findings suggest that the expression of p75 and trkA mRNAs are differentially regulated by BDNF and NGF at successive early stages of neuronal development.


2010 ◽  
Vol 19 (18) ◽  
pp. 3642-3651 ◽  
Author(s):  
Maria M. Alves ◽  
Grzegorz Burzynski ◽  
Jean-Marie Delalande ◽  
Jan Osinga ◽  
Annemieke van der Goot ◽  
...  

Abstract Goldberg–Shprintzen syndrome (GOSHS) is a rare clinical disorder characterized by central and enteric nervous system defects. This syndrome is caused by inactivating mutations in the Kinesin Binding Protein (KBP) gene, which encodes a protein of which the precise function is largely unclear. We show that KBP expression is up-regulated during neuronal development in mouse cortical neurons. Moreover, KBP-depleted PC12 cells were defective in nerve growth factor-induced differentiation and neurite outgrowth, suggesting that KBP is required for cell differentiation and neurite development. To identify KBP interacting proteins, we performed a yeast two-hybrid screen and found that KBP binds almost exclusively to microtubule associated or related proteins, specifically SCG10 and several kinesins. We confirmed these results by validating KBP interaction with one of these proteins: SCG10, a microtubule destabilizing protein. Zebrafish studies further demonstrated an epistatic interaction between KBP and SCG10 in vivo . To investigate the possibility of direct interaction between KBP and microtubules, we undertook co-localization and in vitro binding assays, but found no evidence of direct binding. Thus, our data indicate that KBP is involved in neuronal differentiation and that the central and enteric nervous system defects seen in GOSHS are likely caused by microtubule-related defects.


2018 ◽  
Vol 115 (31) ◽  
pp. 7973-7978 ◽  
Author(s):  
Xiaobai Patrinostro ◽  
Pallabi Roy ◽  
Angus Lindsay ◽  
Christopher M. Chamberlain ◽  
Lauren J. Sundby ◽  
...  

The highly similar cytoplasmic β- and γ-actins differ by only four functionally similar amino acids, yet previous in vitro and in vivo data suggest that they support unique functions due to striking phenotypic differences between Actb and Actg1 null mouse and cell models. To determine whether the four amino acid variances were responsible for the functional differences between cytoplasmic actins, we gene edited the endogenous mouse Actb locus to translate γ-actin protein. The resulting mice and primary embryonic fibroblasts completely lacked β-actin protein, but were viable and did not present with the most overt and severe cell and organismal phenotypes observed with gene knockout. Nonetheless, the edited mice exhibited progressive high-frequency hearing loss and degeneration of actin-based stereocilia as previously reported for hair cell-specific Actb knockout mice. Thus, β-actin protein is not required for general cellular functions, but is necessary to maintain auditory stereocilia.


1996 ◽  
Vol 109 (3) ◽  
pp. 569-578 ◽  
Author(s):  
H. Herrmann ◽  
M.D. Munick ◽  
M. Brettel ◽  
B. Fouquet ◽  
J. Markl

We have isolated from a rainbow trout (Oncorhynchus mykiss) spleen cDNA library a clone coding for vimentin. The deduced amino acid sequence reveals a high degree of identity with vimentin from carp (81%), frog (71%), chick and human (73% each). Large stretches in the central alpha-helical rod are identical within all four classes of vertebrates, but in 17 residues spread over the entire rod, the two fish differ distinctly from the tetrapod species. In addition, in the more diverged non-helical head domain, a nonapeptide motif previously shown to be important for regular filament formation is conserved. Recombinant trout vimentin assembles into bona fide filaments in vitro, with a temperature optimum between 18 and 24 degrees C. Above 27 degrees C, however, filament assembly is abruptly abolished and short filaments with thickened ends as well as structures without typical intermediate filament appearance are formed. This distinguishes its assembly properties significantly from amphibian, avian and mammalian vimentin. Also in vivo, after cDNA transfection into vimentin-free mammalian epithelial cells, trout vimentin does not form typical intermediate filament arrays at 37 degrees C. At 28 degrees C, and even more pronounced at 22 degrees C, the vimentin-positive material in the transfected cells is reorganized in the perinuclear region with a partial fibrillar appearance, but typical intermediate filament arrays are not formed. Together with immunoblotting and immunolocalization data from trout tissues, where vimentin is predominantly found in glial and white blood cells, we conclude that vimentin is indeed important in its filamentous form in fish and other vertebrates, possibly fulfilling cellular functions not directly evident in gene targeting experiments carried out in mice.


Sign in / Sign up

Export Citation Format

Share Document