scholarly journals Dual roles of parathyroid hormone related protein in TGF-β1 signaling and fibronectin up-regulation in mesangial cells

2017 ◽  
Vol 37 (5) ◽  
Author(s):  
Su-Zhen Wu ◽  
Si-Jun Yang ◽  
Hong-Min Chen ◽  
Fang-Fang Peng ◽  
Hong Yu ◽  
...  

Little is known about the cross-talk between parathyroid hormone (PTH) related protein (PTHrP) and TGF-β1 in mesangial cells (MCs). Our results showed that PTHrP treatment (≤3 h) induced internalization of PTH1R (PTH/PTHrP receptor)–TβRII (TGF-β type 2 receptor) complex and suppressed TGF-β1-mediated Smad2/3 activation and fibronectin (FN) up-regulation. However, prolonged PTHrP treatment (12–48 h) failed to induce PTH1R–TβRII association and internalization. Total protein levels of PTH1R and TβRII were unaffected by PTHrP treatment. These results suggest that internalization of PTH1R and TβRII after short PTHrP treatment might not lead to their proteolytic destruction, allowing the receptors to be recycled back to the plasma membrane during prolonged PTHrP exposure. Receptor re-expression at the cell surface allows PTHrP to switch from its initial inhibitory effect to promote induction of FN. Our study thus demonstrates the dual roles of PTHrP on TGF-β1 signaling and FN up-regulation for the first time in glomerular MCs. These data also provided new insights to guide development of therapy for diabetic kidney disease (DKD).

2019 ◽  
Vol 39 (4) ◽  
Author(s):  
Hong-Min Chen ◽  
Jia-Jia Dai ◽  
Rui Zhu ◽  
Fang-Fang Peng ◽  
Su-Zhen Wu ◽  
...  

Abstract Parathyroid hormone-related protein (PTHrP) is known to be up-regulated in both glomeruli and tubules in patients with diabetic kidney disease (DKD), but its role remains unclear. Previous studies show that PTHrP-induced hypertrophic response in mesangial cells (MCs) and epithelial-mesenchymal transition (EMT) in tubuloepithelial cells can be mediated by TGF-β1. In the present study, although long-term PHTrP (1–34) treatment increased the mRNA and protein level of TGF-β1 in primary rat MCs, fibronectin up-regulation occurred earlier, suggesting that fibronectin induction is independent of TGF-β1/Smad signaling. We thus evaluated the involvement of epidermal growth factor receptor (EGFR) signaling and found that nicotinamide adenine dinucleotide phosphate oxidase-derived reactive oxygen species mediates PTHrP (1–34)-induced Src kinase activation. Src phosphorylates EGFR at tyrosine 845 and then transactive EGFR. Subsequent PI3K activation mediates Akt and ERK1/2 activation. Akt and ERK1/2 discretely lead to excessive protein synthesis of fibronectin. Our study thus demonstrates the new role of PTHrP in fibronectin up-regulation for the first time in glomerular MCs. These data also provided new insights to guide development of therapy for glomerular sclerosis.


1999 ◽  
Vol 277 (6) ◽  
pp. E990-E995 ◽  
Author(s):  
Ricardo J. Bosch ◽  
Pilar Rojo-Linares ◽  
Guadalupe Torrecillas-Casamayor ◽  
M. Carmen Iglesias-Cruz ◽  
Diego Rodríguez-Puyol ◽  
...  

Parathyroid hormone (PTH) and PTH-related protein (PTHrP) produce similar biological effects through the PTH/PTHrP receptor. Because PTHrP exhibits vasodilatory properties, we evaluated the hypothesis that this hormone interacts with human mesangial cells (HMC). The PTHrP prevented both the expected reduction in the planar cell surface area and the increase in myosin light-chain phosphorylation induced by platelet-activating factor (PAF) on HMC, in a dose-dependent manner. This effect was completely blocked by pertussis toxin and dideoxyadenosine, suggesting that a G protein-coupled receptor and cAMP are important in the PTHrP transduction mechanism. Moreover, PTHrP increased cAMP synthesis and thymidine incorporation in HMC. However, whereas RT-PCR and Southern and Northern blot analyses demonstrated the expression of human PTH/PTHrP receptor in human kidney cortex, no expression could be demonstrated in HMC. These results show that PTH and PTHrP directly interact with mesangial cells. These effects might be mediated by a receptor different from the PTH/PTHrP receptor.


Metabolism ◽  
2002 ◽  
Vol 51 (7) ◽  
pp. 871-875 ◽  
Author(s):  
Keiko Uchimura ◽  
Takehiko Mokuno ◽  
Akio Nagasaka ◽  
Nobuki Hayakawa ◽  
Taiya Kato ◽  
...  

Surgery ◽  
2005 ◽  
Vol 138 (3) ◽  
pp. 456-463 ◽  
Author(s):  
Alan Dackiw ◽  
Jingxuan Pan ◽  
Guangpu Xu ◽  
Sai-Ching J. Yeung

Sign in / Sign up

Export Citation Format

Share Document