scholarly journals Active PKG II inhibited the growth and migration of ovarian cancer cells through blocking Raf/MEK and PI3K/Akt signaling pathways

2019 ◽  
Vol 39 (8) ◽  
Author(s):  
Yan Wu ◽  
Qin Cai ◽  
Wei Li ◽  
Zhensheng Cai ◽  
Ying Liu ◽  
...  

Abstract Despite advances in chemotherapy, ovarian cancer (OC) is still the most lethal gynecologic malignancy. So, it is imperative to explore its mechanism and find novel targets to improve the outcome. Type II cyclic guanosine 3′,5′-monophosphate (cGMP)-dependent protein kinase (PKG II) has been recently reported to inhibit proliferation and metastasis in several tumors. The present study is to clarify the effect of PKG II combined with l-arginine (l-Arg) on OC cells. SKOV3 and A2780 cells were infected with adenovirus coding cDNA of PKG II to increase PKG II expression and l-Arg was applied to activate this kinase. CCK8 assay, Transwell migration and TUNEL assay were applied to detect the proliferation, migration and apoptosis of the OC cells, respectively. Western blotting was used to detect the level of total and phosphorylated proteins. Our results showed that co-treatment with PKG II and l-Arg inhibited EGF-induced proliferation and the expression of Proliferating Cell Nuclear Antigen (PCNA), Cyclin E and N-Cadherin, whereas up-regulated the expression of E-Cadherin, abolished the anti-apoptotic effect of EGF, prevented the process of epithelial-to-mesenchymal transition (EMT) as well as blocked EGF-triggered Raf-MEK and phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathways. Our results suggested that PKG II activated by l-Arg could inhibit proliferation and migration and promote the apoptosis of OC cells. Based on the above results and our previous data, it is speculated that PKG II is an inhibitor of cancer with extensive effects.

2017 ◽  
Vol 8 (1) ◽  
pp. 57-64 ◽  
Author(s):  
Wenying Huo ◽  
Guannan Zhao ◽  
Jinggang Yin ◽  
Xuan Ouyang ◽  
Yinan Wang ◽  
...  

Oncotarget ◽  
2016 ◽  
Vol 7 (51) ◽  
pp. 84453-84467 ◽  
Author(s):  
Horacio Cardenas ◽  
Janice Zhao ◽  
Edyta Vieth ◽  
Kenneth P. Nephew ◽  
Daniela Matei

Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 237
Author(s):  
Zeinab Dehghani-Ghobadi ◽  
Shahrzad Sheikh Hasani ◽  
Ehsan Arefian ◽  
Ghamartaj Hossein

In this paper, we investigate whether Wnt5A is associated with the TGF-β1/Smad2/3 and Hippo-YAP1/TAZ-TEAD pathways, implicated in epithelial to mesenchymal transition (EMT) in epithelial ovarian cancer. We used 3D and 2D cultures of human epithelial ovarian cancer cell lines SKOV-3, OVCAR-3, CAOV-4, and different subtypes of human serous ovarian cancer compared to normal ovary specimens. Wnt5A showed a positive correlation with TAZ and TGFβ1 in high- and low-grade serous ovarian cancer specimens compared to borderline serous and normal ovaries. Silencing Wnt5A by siRNAs significantly decreased Smad2/3 activation and YAP1 expression and nuclear shuttling in ovarian cancer (OvCa) cells. Furthermore, Wnt5A was required for TGFβ1-induced cell migration and invasion. In addition, inhibition of YAP1 transcriptional activity by Verteporfin (VP) altered OvCa cell migration and invasion through decreased Wnt5A expression and inhibition of Smad2/3 activation, which was reverted in the presence of exogenous Wnt5A. We found that the activation of TGFβ1 and YAP1 nuclear shuttling was promoted by Wnt5A-induced integrin alpha v. Lastly, Wnt5A was implicated in activating human primary omental mesothelial cells and subsequent invasion of ovarian cancer cells. Together, we propose that Wnt5A could be a critical mediator of EMT-associated pathways.


2015 ◽  
Vol 27 (1) ◽  
pp. 198 ◽  
Author(s):  
Y.-S. Kim ◽  
K.-C. Choi

The ovary is the important organ to produce oocytes. Any disorder will affect embryo production. Ovarian cancer is one of gynecologic cancers in women which can affect ovarian functions. Oestradiol (E2) may be involved in ovarian cell growth and epithelial-mesenchymal transition (EMT) for diverse functions. EMT is an important process in embryo development and tumour migration or progression. Bis-phenol A (BPA) and nonyl-phenol (NP) have an estrogenic property, which can be suspected as endocrine disrupting chemicals (EDC). In this study, it has been examined whether BPA and NP can cause EMT process and migration in BG-1 ovarian cancer cells. To confirm the effect of these EDCs, BG-1 ovarian cancer cells were cultured and treated with DMSO (0.1%), E2 (10–7 M), BPA (10–6 M) and NP (10–6 M) for 0, 6, and 24 h. The mRNAs were extracted to perform reverse-transcription (RT)-PCR and the changes in the mRNA expressions were analysed by ANOVA test. Following treatments with BPA and NP, alterations of EMT markers; that is, vimentin and E-cadherin, were examined at mRNA levels by RT-PCR. The levels of vimentin were up-regulated by E2, BPA, or NP in a time-dependent manner. In addition, transcriptional factors of EMT response, i.e. snail and slug, were enhanced by these treatments more than 2 times. BG-1 cells were exposed to these EDCs for 0, 24, and 48 h. Vimentin and snail proteins were induced by E2, BPA, or NP, while the expression of E-cadherin was decreased by them. To reveal that this EMT response is affected by oestrogen receptor (ER), the cells were treated with these EDCs in the presence of an ER antagonist, ICI 182 780 (10–6 M). Treatment with ICI 182 780 reversed EDC-induced alteration of these EMT markers, E-cadherin, vimentin, and snail. Since EMT response can cause metastasis, a scratch assay was performed to show migration caused by BPA or NP. BPA or E2 enhanced migratory capability of these BG-1 cells. Taken together, these results indicate that BPA and NP, potential EDC, may have an ability to influence ovarian cancer metastasis via regulating snail and slug genes in ER-positive ovarian cancers. In a future study, their effects in inducing EMT and migration will be tested in a xenograft mouse model.This work was supported by a grant from the Next-Generation BioGreen 21 Program (no. PJ009599), Rural Development Administration, Republic of Korea.


2018 ◽  
Vol 9 (24) ◽  
pp. 4578-4585 ◽  
Author(s):  
Liang Ji ◽  
Guannan Zhao ◽  
Peng Zhang ◽  
Wenying Huo ◽  
Peixin Dong ◽  
...  

Author(s):  
Ruitao Zhang ◽  
Huirong Shi ◽  
Fang Ren ◽  
Wei Feng ◽  
Yuan Cao ◽  
...  

Abstract Background Downregulation of microRNA-338-3p (miR-338-3p) was detected in many malignant tumors, which indicated miR-338-3p might serve as a role of antioncogene in those cancers. The present study aimed to explore the roles of miR-338-3p in the growth and metastasis of ovarian cancer cells and elaborate the underlying possible molecular mechanism. Methods Multiply biomedical databases query and KEGG pathway enrichment assay were used to infilter possible target genes and downstream pathways regulated by miR-338-3p. Overexpression miR-338-3p lentiviral vectors were transfected into ovarian cancer OVCAR-3 and OVCAR-8 cells, cell proliferation, migration and invasion were analyzed by MTT, colony formation, transwell, Matrigel assay and xenograft mouse model. One 3′-untranslated regions (UTRs) binding target gene of miR-338-3p, MACC1 (MET transcriptional regulator MACC1), and its regulated gene MET and downstream signaling pathway activities were examined by western blot. Results Biomedical databases query indicated that miR-338-3p could target MACC1 gene and regulate Met, downstream Wnt/Catenin beta and MEK/ERK pathways. Rescue of miR-338-3p could inhibit the proliferation, migration and invasion of ovarian cancer cells, and suppress the growth and metastasis of xenograft tumor. Restoration of miR-338-3p could attenuate MACC1 and Met overexpression induced growth, epithelial to mesenchymal transition (EMT) and activities of Wnt/Catenin beta and MEK/ERK signaling in vitro and in vivo. Conclusions The present data indicated that restoration of miR-338-3p could suppress the growth and metastasis of ovarian cancer cells, which might due to the inhibition of proliferation and EMT induced by MACC1, Met and its downstream Wnt/Catenin beta and MEK/ERK signaling pathways.


Sign in / Sign up

Export Citation Format

Share Document