scholarly journals The role of EMT-related lncRNA in the process of triple-negative breast cancer metastasis

2021 ◽  
Vol 41 (2) ◽  
Author(s):  
Haomeng Zhang ◽  
Jiao Wang ◽  
Yulong Yin ◽  
Qingjie Meng ◽  
Yonggang Lyu

Abstract Triple-negative breast cancer (TNBC) is the most malignant and fatal subtype of breast cancer, which has characterized by negativity expression of ER, PR, and HER2. Metastasis is the main factor affecting the prognosis of TNBC, and the process of metastasis is related to abnormal activation of epithelial–mesenchymal transition (EMT). Recent studies have shown that long non-coding RNA (LncRNA) plays an important role in regulating the metastasis and invasion of TNBC. Therefore, based on the metastasis-related EMT signaling pathway, great efforts have confirmed that LncRNA is involved in the molecular mechanism of TNBC metastasis, which will provide new strategies to improve the treatment and prognosis of TNBC. In this review, we summarized many signal pathways related to EMT involved in the transfer process. The advances from the most recent studies of lncRNAs in the EMT-related signal pathways of TNBC metastasis. We also discussed the clinical research, application, and challenges of LncRNA in TNBC.

Cancers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1802 ◽  
Author(s):  
Qi-Yuan Huang ◽  
Guo-Feng Liu ◽  
Xian-Ling Qian ◽  
Li-Bo Tang ◽  
Qing-Yun Huang ◽  
...  

As a highly heterogeneous malignancy, breast cancer (BC) has become the most significant threat to female health. Distant metastasis and therapy resistance of BC are responsible for most of the cases of mortality and recurrence. Distant metastasis relies on an array of processes, such as cell proliferation, epithelial-to-mesenchymal transition (EMT), mesenchymal-to-epithelial transition (MET), and angiogenesis. Long non-coding RNA (lncRNA) refers to a class of non-coding RNA with a length of over 200 nucleotides. Currently, a rising number of studies have managed to investigate the association between BC and lncRNA. In this study, we summarized how lncRNA has dual effects in BC metastasis by regulating invasion, migration, and distant metastasis of BC cells. We also emphasize that lncRNA has crucial regulatory effects in the stemness and angiogenesis of BC. Clinically, some lncRNAs can regulate chemotherapy sensitivity in BC patients and may function as novel biomarkers to diagnose or predict prognosis for BC patients. The exact impact on clinical relevance deserves further study. This review can be an approach to understanding the dual effects of lncRNAs in BC, thereby linking lncRNAs to quasi-personalized treatment in the future.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuan Tian ◽  
Jin Wu ◽  
Lingjuan Zeng ◽  
Linxi Zhou ◽  
Ying Hu ◽  
...  

Abstract Background Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, and the targeted therapies are lacking for this type of cancer. We previously demonstrated that Huaier effectively improve 5-year OS and DFS in stage III TNBC patients, and the polysaccharides of Huaier (PS-T) have been identified as the major components of Huaier. However, the mechanisms of anti-tumor action of PS-T is unclear. This study aimed to investigate the effect of PS-T on TNBC cell invasion and migration. Results This study showed that PS-T inhibited cell invasion and migration both in vitro and in vivo by inducing autophagy to suppress epithelial-mesenchymal transition (EMT). Autophagy inhibitor LY294002 or knockdown of ATG5 suppressed the inhibitory effects of PS-T. In addition, as a key transcription factor controlling EMT initiation, Snail was found to be degraded by PS-T induced autophagy. In addition, overexpression of Snail reversed the inhibitory effects of PS-T. Furthermore, it was confirmed that the expression of Snail was inversely correlated with LC3 and associated with poor prognosis using immunohistochemistry and TCGA database analysis, respectively. Conclusions This study demonstrated that PS-T could inhibit EMT in breast cancer cells by inducing autophagy to degrade Snail protein, thus improving the prognosis of TNBC, offering potential treatment alternatives for TNBC patients.


Breast Cancer ◽  
2021 ◽  
Author(s):  
Yingzi Zhang ◽  
Jiao Tian ◽  
Chi Qu ◽  
Yang Peng ◽  
Jinwei Lei ◽  
...  

Abstract Background Recent studies have indicated that serpin peptidase inhibitor, clade A, member 3 (SERPINA3) is a potential marker associated with tumor progression, which connoted that SERPINA3 is related to malignant phenotypes in cancer. However, the biological function of SERPINA3 in breast cancer (BC) remains unclear. Methods Bioinformatics data were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Immunohistochemical staining (IHC) was conducted to determine SERPINA3 expression. With strong aggressive abilities, triple-negative breast cancer (TNBC) cell lines (MDA-MB-231, BT549 and MDA-MB-436) were obtained to examine SERPINA3 expression and functions. Wound healing and Transwell assays were performed to measure cell migration and invasion. Cell Counting Kit-8 (CCK-8) assay was conducted to detect cell proliferation abilities and cell viabilities. Results SERPINA3 was upregulated in BC tissues. Functional assays suggested that overexpression of SERPINA3 significantly promoted cell proliferation, where migration and invasion of TNBC cells were accelerated. Knockdown of SERPINA3 had the opposite effects. These results causing by overexpression of SERPINA3 were also confirmed in non-TNBC cell lines. Overexpression of SERPINA3 remarkably enhanced the epithelial–mesenchymal transition (EMT) by upregulating the EMT markers and EZH2. In addition, the overexpression of SERPINA3 reduced the sensitivity of TNBC cells to cisplatin. Conclusion SERPINA3 can regulate the migration, invasion and EMT of TNBC cells and increased expression of SERPINA3 confers resistance to cisplatin in TNBC cells. We discern it is required for the regulation of BC progression and is a critical target for the clinical treatment of BC.


Sign in / Sign up

Export Citation Format

Share Document