Oxidized lipoproteins influence gene expression by causing oxidative stress and activating the transcription factor NF-κB

1993 ◽  
Vol 21 (3) ◽  
pp. 651-655 ◽  
Author(s):  
Ali Andalibi ◽  
Feng Liao ◽  
Susan Imes ◽  
Alan M. Fogelman ◽  
Aldons J. Lusis
F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 1459
Author(s):  
Shalem Raju Modi ◽  
Tarja Kokkola

GR24 is a synthetic strigolactone analog, demonstrated to regulate the development of plants and arbuscular mycorrhizal fungi. GR24 possesses anti-cancer and anti-apoptotic properties, enhances insulin sensitivity and mitochondrial biogenesis in skeletal myotubes, inhibits adipogenesis, decreases inflammation in adipocytes and macrophages and downregulates the expression of hepatic gluconeogenic enzymes. Transcription factor Nrf2 (Nuclear factor (erythroid-derived 2)-like 2) is a master regulator of antioxidant response, regulating a multitude of genes involved in cellular stress responses and anti-inflammatory pathways, thus maintaining cellular redox homeostasis. Nrf2 activation reduces the deleterious effects of mitochondrial toxins and has multiple roles in promoting mitochondrial function and dynamics. We studied the role of GR24 on gene expression in rat L6 skeletal muscle cells which were differentiated into myotubes. The myotubes were treated with GR24 and analyzed by microarray gene expression profiling. GR24 upregulated the cytoprotective transcription factor Nrf2 and its target genes, activating antioxidant defences, suggesting that GR24 may protect skeletal muscle from the toxic effects of oxidative stress.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Johanna K. Freundt ◽  
Gerrit Frommeyer ◽  
Fabian Wötzel ◽  
Andreas Huge ◽  
Andreas Hoffmeier ◽  
...  

Introduction. Cardiomyocyte remodelling in atrial fibrillation (AF) has been associated with both oxidative stress and endoplasmic reticulum (ER) stress and is accompanied by a complex transcriptional regulation. Here, we investigated the role the oxidative stress and ER stress responsive bZIP transcription factor ATF4 plays in atrial cardiomyocyte viability and AF induced gene expression. Methods. HL-1 cardiomyocytes were subjected to rapid field stimulation. Forced expression of ATF4 was achieved by adenoviral gene transfer. Using global gene expression analysis and chromatin immunoprecipitation, ATF4 dependent transcriptional regulation was studied, and tissue specimen of AF patients was analysed by immunohistochemistry. Results. Oxidative stress and ER stress caused a significant reduction in cardiomyocyte viability and were associated with an induction of ATF4. Accordingly, ATF4 was also induced by rapid field stimulation mimicking AF. Forced expression of wild type ATF4 promoted cardiomyocyte death. ATF4 was demonstrated to bind to the promoters of several cell stress genes and to induce the expression of a number of ATF4 dependent stress responsive genes. Moreover, immunohistochemical analyses showed that ATF4 is expressed in the nuclei of cardiomyocytes of tissue specimen obtained from AF patients. Conclusion. ATF4 is expressed in human atrial cardiomyocytes and is induced in response to different types of cell stress. High rate electrical field stimulation seems to result in ATF4 induction, and forced expression of ATF4 reduces cardiomyocyte viability.


2016 ◽  
Vol 27 (9) ◽  
pp. 1536-1551 ◽  
Author(s):  
Michael E. Fusakio ◽  
Jeffrey A. Willy ◽  
Yongping Wang ◽  
Emily T. Mirek ◽  
Rana J. T. Al Baghdadi ◽  
...  

Disturbances in protein folding and membrane compositions in the endoplasmic reticulum (ER) elicit the unfolded protein response (UPR). Each of three UPR sensory proteins—PERK (PEK/EIF2AK3), IRE1, and ATF6—is activated by ER stress. PERK phosphorylation of eIF2 represses global protein synthesis, lowering influx of nascent polypeptides into the stressed ER, coincident with preferential translation of ATF4 (CREB2). In cultured cells, ATF4 induces transcriptional expression of genes directed by the PERK arm of the UPR, including genes involved in amino acid metabolism, resistance to oxidative stress, and the proapoptotic transcription factor CHOP (GADD153/DDIT3). In this study, we characterize whole-body and tissue-specific ATF4-knockout mice and show in liver exposed to ER stress that ATF4 is not required for CHOP expression, but instead ATF6 is a primary inducer. RNA-Seq analysis indicates that ATF4 is responsible for a small portion of the PERK-dependent UPR genes and reveals a requirement for expression of ATF4 for expression of genes involved in oxidative stress response basally and cholesterol metabolism both basally and under stress. Consistent with this pattern of gene expression, loss of ATF4 resulted in enhanced oxidative damage, and increased free cholesterol in liver under stress accompanied by lowered cholesterol in sera.


2021 ◽  
Author(s):  
Motoko Nakayama ◽  
Etsuko Ueta ◽  
Mitsuru Yoshida ◽  
Yuri Shimizu ◽  
Reiko Oguchi ◽  
...  

The mechanism of antioxidant defense system is still controversial. As islet β-cell is weak in oxidative condition, that causes diabetes mellitus, therefore, antioxidant defense system of human pancreatic islet derived 1.1B4 cell was analyzed. Cells were exposed to H2O2 and comprehensive gene expression was analyzed by Agilent human microarray. HMOX1 and NR4A3, member of orphan receptor, were up-regulated. Therefore, NR4A3 was knocked down with siRNA, then analyzed gene expression by microarray, and found that the knocked down cells were weak in oxidative stress. HMOX1 expression was strongly inhibited by siRNA of NR4A3, and NR4A3 responsible sequence of aaggtca was found near the HMOX1 gene, suggesting NR4A3 is oxidative stress responsible transcription factor through HMOX1 expression. The expression of CCNE1 and CDK2 was also inhibited by knocked down of NR4A3, it is suggested NR4A3 is also important transcription factor for cell growth regulation.


2020 ◽  
Vol 17 (3) ◽  
pp. 191-199
Author(s):  
Seval Yilmaz ◽  
Fatih Mehmet Kandemir ◽  
Emre Kaya ◽  
Mustafa Ozkaraca

Objective: This study aimed to detect hepatic oxidative damage caused by aflatoxin B1 (AFB1), as well as to examine how propolis protects against hepatotoxic effects of AFB1. Method: Rats were split into four groups as control group, AFB1 group, propolis group, AFB1+ propolis group. Results: There was significant increase in malondialdehyde (MDA) level and tumor suppressor protein (TP53) gene expression, Glutathione (GSH) level, Catalase (CAT) activity, CAT gene expression decreased in AFB1 group in blood. MDA level and Glutathione-S-Transferase (GST) activity, GST and TP53 gene expressions increased in AFB1 group, whereas GSH level and CAT activity alongside CAT gene expression decreased in liver. AFB1+propolis group showed significant decrease in MDA level, GST activity, TP53 and GST gene expressions, GSH level and CAT activity and CAT gene expression increased in liver compared to AFB1 group. Conclusion: These results suggest that propolis may potentially be natural agent that prevents AFB1- induced oxidative stress and hepatotoxicity.


Sign in / Sign up

Export Citation Format

Share Document