The life and death of translation elongation factor 2

2006 ◽  
Vol 34 (1) ◽  
pp. 1-6 ◽  
Author(s):  
R. Jørgensen ◽  
A.R. Merrill ◽  
G.R. Andersen

eEF2 (eukaryotic elongation factor 2) occupies an essential role in protein synthesis where it catalyses the translocation of the two tRNAs and the mRNA after peptidyl transfer on the 80 S ribosome. Recent crystal structures of eEF2 and the cryo-electron microscopy reconstruction of its 80 S complex now provide a substantial structural framework for dissecting the functional properties of this factor. The factor can be modified by either phosphorylation or ADP-ribosylation, which results in cessation of translation. We review the structural and functional properties of eEF2 with particular emphasis on the unique diphthamide residue, which is ADP-ribosylated by diphtheria toxin from Corynebacterium diphtheriae and exotoxin A from Pseudomonas aeruginosa.

2021 ◽  
Vol 8 ◽  
Author(s):  
Darby J. Ballard ◽  
Hao-Yun Peng ◽  
Jugal Kishore Das ◽  
Anil Kumar ◽  
Liqing Wang ◽  
...  

Eukaryotic Elongation Factor-2 Kinase (eEF2K) acts as a negative regulator of protein synthesis, translation, and cell growth. As a structurally unique member of the alpha-kinase family, eEF2K is essential to cell survival under stressful conditions, as it contributes to both cell viability and proliferation. Known as the modulator of the global rate of protein translation, eEF2K inhibits eEF2 (eukaryotic Elongation Factor 2) and decreases translation elongation when active. eEF2K is regulated by various mechanisms, including phosphorylation through residues and autophosphorylation. Specifically, this protein kinase is downregulated through the phosphorylation of multiple sites via mTOR signaling and upregulated via the AMPK pathway. eEF2K plays important roles in numerous biological systems, including neurology, cardiology, myology, and immunology. This review provides further insights into the current roles of eEF2K and its potential to be explored as a therapeutic target for drug development.


2012 ◽  
Vol 442 (3) ◽  
pp. 681-692 ◽  
Author(s):  
Sébastien Pyr Dit Ruys ◽  
Xuemin Wang ◽  
Ewan M. Smith ◽  
Gaëtan Herinckx ◽  
Nusrat Hussain ◽  
...  

eEF2K [eEF2 (eukaryotic elongation factor 2) kinase] phosphorylates and inactivates the translation elongation factor eEF2. eEF2K is not a member of the main eukaryotic protein kinase superfamily, but instead belongs to a small group of so-called α-kinases. The activity of eEF2K is normally dependent upon Ca2+ and calmodulin. eEF2K has previously been shown to undergo autophosphorylation, the stoichiometry of which suggested the existence of multiple sites. In the present study we have identified several autophosphorylation sites, including Thr348, Thr353, Ser366 and Ser445, all of which are highly conserved among vertebrate eEF2Ks. We also identified a number of other sites, including Ser78, a known site of phosphorylation, and others, some of which are less well conserved. None of the sites lies in the catalytic domain, but three affect eEF2K activity. Mutation of Ser78, Thr348 and Ser366 to a non-phosphorylatable alanine residue decreased eEF2K activity. Phosphorylation of Thr348 was detected by immunoblotting after transfecting wild-type eEF2K into HEK (human embryonic kidney)-293 cells, but not after transfection with a kinase-inactive construct, confirming that this is indeed a site of autophosphorylation. Thr348 appears to be constitutively autophosphorylated in vitro. Interestingly, other recent data suggest that the corresponding residue in other α-kinases is also autophosphorylated and contributes to the activation of these enzymes [Crawley, Gharaei, Ye, Yang, Raveh, London, Schueler-Furman, Jia and Cote (2011) J. Biol. Chem. 286, 2607–2616]. Ser366 phosphorylation was also detected in intact cells, but was still observed in the kinase-inactive construct, demonstrating that this site is phosphorylated not only autocatalytically but also in trans by other kinases.


2015 ◽  
Vol 465 (2) ◽  
pp. 227-238 ◽  
Author(s):  
John R. P. Knight ◽  
Amandine Bastide ◽  
Anne Roobol ◽  
Jo Roobol ◽  
Thomas J. Jackson ◽  
...  

Modulation of translation elongation rates, and not initiation, is responsible for the reduction of protein synthesis in response to cold-stress induced in mild hypothermic conditions. This is mediated by release of Ca2+ ions from the endoplasmic reticulum (ER) and activation of eEF2K (eukaryotic elongation factor 2 kinase).


2015 ◽  
Vol 35 (10) ◽  
pp. 1788-1804 ◽  
Author(s):  
Claire E. J. Moore ◽  
Halina Mikolajek ◽  
Sergio Regufe da Mota ◽  
Xuemin Wang ◽  
Justin W. Kenney ◽  
...  

Protein synthesis, especially translation elongation, requires large amounts of energy, which is often generated by oxidative metabolism. Elongation is controlled by phosphorylation of eukaryotic elongation factor 2 (eEF2), which inhibits its activity and is catalyzed by eEF2 kinase (eEF2K), a calcium/calmodulin-dependent α-kinase. Hypoxia causes the activation of eEF2K and induces eEF2 phosphorylation independently of previously known inputs into eEF2K. Here, we show that eEF2K is subject to hydroxylation on proline-98. Proline hydroxylation is catalyzed by proline hydroxylases, oxygen-dependent enzymes which are inactivated during hypoxia. Pharmacological inhibition of proline hydroxylases also stimulates eEF2 phosphorylation. Pro98 lies in a universally conserved linker between the calmodulin-binding and catalytic domains of eEF2K. Its hydroxylation partially impairs the binding of calmodulin to eEF2K and markedly limits the calmodulin-stimulated activity of eEF2K. Neuronal cells depend on oxygen, and eEF2K helps to protect them from hypoxia. eEF2K is the first example of a protein directly involved in a major energy-consuming process to be regulated by proline hydroxylation. Since eEF2K is cytoprotective during hypoxia and other conditions of nutrient insufficiency, it may be a valuable target for therapy of poorly vascularized solid tumors.


Sign in / Sign up

Export Citation Format

Share Document