A second paradigm for gene activation in bacteria

2006 ◽  
Vol 34 (6) ◽  
pp. 1067-1071 ◽  
Author(s):  
M. Buck ◽  
D. Bose ◽  
P. Burrows ◽  
W. Cannon ◽  
N. Joly ◽  
...  

Control of gene expression is key to development and adaptation. Using purified transcription components from bacteria, we employ structural and functional studies in an integrative manner to elaborate a detailed description of an obligatory step, the accessing of the DNA template, in gene expression. Our work focuses on a specialized molecular machinery that utilizes ATP hydrolysis to initiate DNA opening and permits a description of how the events triggered by ATP hydrolysis within a transcriptional activator can lead to DNA opening and transcription. The bacterial EBPs (enhancer binding proteins) that belong to the AAA+ (ATPases associated with various cellular activities) protein family remodel the RNAP (RNA polymerase) holoenzyme containing the σ54 factor and convert the initial, transcriptionally silent promoter complex into a transcriptionally proficient open complex using transactions that reflect the use of ATP hydrolysis to establish different functional states of the EBP. A molecular switch within the model EBP we study [called PspF (phage shock protein F)] is evident, and functions to control the exposure of a solvent-accessible flexible loop that engages directly with the initial RNAP promoter complex. The σ54 factor then controls the conformational changes in the RNAP required to form the open promoter complex.

2003 ◽  
Vol 185 (20) ◽  
pp. 6215-6219 ◽  
Author(s):  
Ying-Kai Wang ◽  
Sungdae Park ◽  
B. Tracy Nixon ◽  
Timothy R. Hoover

ABSTRACT Activators of σ54-RNA polymerase holoenzyme couple ATP hydrolysis to formation of an open promoter complex. DctDΔ1-142, a truncated and constitutively active form of the σ54-dependent activator DctD from Sinorhizobium meliloti, displayed an altered DNase I footprint at its binding site located upstream of the dctA promoter in the presence of ATP. The altered footprint was not observed for a mutant protein with a substitution at or near the putative arginine finger, a conserved arginine residue thought to contact the nucleotide. These data suggest that structural changes in DctDΔ1-142 during ATP hydrolysis can be detected by alterations in the DNase I footprint of the protein and may be communicated by interactions between bound nucleotide and the arginine finger. In addition, kinetic data for changes in fluorescence energy transfer upon binding of 2′(3′)-O-(N-methylanthraniloyl)-ATP (Mant-ATP) to DctDΔ1-142 and DctD suggested that these proteins undergo multiple conformational changes following ATP binding.


2000 ◽  
Vol 20 (17) ◽  
pp. 6390-6398 ◽  
Author(s):  
Phuoc T. Tran ◽  
R. Michael Liskay

ABSTRACT Saccharomyces cerevisiae MutL homologues Mlh1p and Pms1p form a heterodimer, termed MutLα, that is required for DNA mismatch repair after mismatch binding by MutS homologues. Recent sequence and structural studies have placed the NH2 termini of MutL homologues in a new family of ATPases. To address the functional significance of this putative ATPase activity in MutLα, we mutated conserved motifs for ATP hydrolysis and ATP binding in both Mlh1p and Pms1p and found that these changes disrupted DNA mismatch repair in vivo. Limited proteolysis with purified recombinant MutLα demonstrated that the NH2 terminus of MutLα undergoes conformational changes in the presence of ATP and nonhydrolyzable ATP analogs. Furthermore, two-hybrid analysis suggested that these ATP-binding-induced conformational changes promote an interaction between the NH2 termini of Mlh1p and Pms1p. Surprisingly, analysis of specific mutants suggested differential requirements for the ATPase motifs of Mlh1p and Pms1p during DNA mismatch repair. Taken together, these results suggest that MutLα undergoes ATP-dependent conformational changes that may serve to coordinate downstream events during yeast DNA mismatch repair.


2019 ◽  
Author(s):  
Clyde Campbell ◽  
Joseph J. Lancman ◽  
Raquel Espin Palazon ◽  
Jonatan Matalonga ◽  
Jiaye He ◽  
...  

The extent to which differentiated cells, while remaining in their native microenvironment, can be reprogrammed to assume a different identity will reveal fundamental insight into cellular plasticity and impact regenerative medicine. To investigate in vivo cell lineage potential, we leveraged the zebrafish as a practical vertebrate platform to determine factors and mechanisms necessary to induce differentiated cells of one germ layer to adopt the lineage of another. We discovered that ectopic co-expression of Sox32 and Oct4 in several non-endoderm lineages, including skeletal muscle, can specifically trigger an early endoderm genetic program in a cell-autonomous manner. Gene expression, live imaging, and functional studies reveal that the endoderm-induced muscle cells lose muscle gene expression and morphology, while specifically gaining endoderm organogenesis markers, such as the pancreatic specification genes, hhex and ptf1a, via a mechanism resembling normal development. Endoderm induction by a pluripotent defective form of Oct4, endoderm markers appearing prior to loss of muscle cell morphology, a lack of dependence on cell division, and a lack of mesoderm, ectoderm, dedifferentiation, and pluripotency gene activation, together, suggests that reprogramming is endoderm specific and occurs via direct lineage conversion. Our work demonstrates that within a vertebrate animal, stably differentiated cells can be induced to directly adopt the identity of a completely unrelated cell lineage, while remaining in a distinct microenvironment, suggesting that differentiated cells in vivo may be more amenable to lineage conversion than previously appreciated. This discovery of possibly unlimited lineage potential of differentiated cells in vivo challenges our understanding of cell lineage restriction and may pave the way towards a vast new in vivo supply of replacement cells for degenerative diseases such as diabetes.


2021 ◽  
Author(s):  
Elena Garcia-Perez ◽  
Borja Diego-Martin ◽  
Alfredo Quijano-Rubio ◽  
Elena Moreno Gimenez ◽  
Diego Orzaez ◽  
...  

CRISPR-based programmable transcriptional activators (PTAs) are used in plants for rewiring gene networks. Better tuning of their activity in a time and dose-dependent manner should allow precise control of gene expression. Here, we report the optimization of a Copper Inducible system called CI-switch for conditional gene activation in Nicotiana benthamiana. In the presence of copper, the copper-responsive factor CUP2 undergoes a conformational change and binds a DNA motif named copper-binding site (CBS). In this study, we tested several activation domains fused to CUP2 and found that the non-viral Gal4 domain results in strong activation of a reporter gene equipped with a minimal promoter, offering advantages over previous designs. To connect copper regulation with downstream programable elements, several copper-dependent configurations of the strong dCasEV2.1 PTA were assayed, aiming at maximizing activation range, while minimizing undesired background expression. The best configuration involved a dual copper regulation of the two protein components of the PTA, namely dCas9:EDLL and MS2:VPR, and a constitutive RNA pol III-driven expression of the third component, a guide RNA with anchoring sites for the MS2 RNA-binding domain. With these optimizations in place, the CI/dCasEV2.1 system resulted in copper-dependent activation rates of 2,600-fold for the endogenous N. benthamiana DFR gene, with negligible expression in the absence of the trigger. The tight regulation of copper over CI/dCasEV2.1 makes this system ideal for the conditional production of plant-derived metabolites and recombinant proteins in the field.


2020 ◽  
Author(s):  
P. Duc Dong ◽  
Joseph Lancman ◽  
Clyde Campbell ◽  
Raquel Espin-Palazon ◽  
Jonatan Matalonga ◽  
...  

Abstract The extent to which differentiated cells, while remaining in their native microenvironment, can be reprogrammed to assume a different identity will reveal fundamental insight into cellular plasticity and impact regenerative medicine. To investigate in vivo cell lineage potential, we leveraged the zebrafish as a practical vertebrate platform to determine factors and mechanisms necessary to induce differentiated cells of one germ layer to adopt the lineage of another. We discovered that ectopic co-expression of Sox32 and Oct4 in several non-endoderm lineages, including skeletal muscle, can specifically trigger an early endoderm genetic program in a cell-autonomous manner. Gene expression, live imaging, and functional studies reveal that the endoderm-induced muscle cells lose muscle gene expression and morphology, while specifically gaining endoderm organogenesis lineage markers, such as the pancreatic specification genes, hhex and ptf1a, via a mechanism resembling normal development. Endoderm induction by a pluripotent defective form of Oct4, endoderm markers appearing prior to loss of muscle cell morphology, and a lack of mesoderm, ectoderm, dedifferentiation, and pluripotency gene activation, together, suggests that reprogramming is endoderm specific and occurs via direct transdifferentiation. Our work demonstrates that within a living vertebrate animal, differentiated cells can be induced to directly adopt the identity of a completely unrelated cell lineage, while remaining in a distinct microenvironment, suggesting that differentiated cells in vivo may be more amenable to lineage conversion than previously appreciated. This discovery of extensive lineage potential of differentiated cells, in vivo, challenges our understanding of cell lineage restriction and may pave the way towards new in vivo sources of replacement cells for degenerative diseases such as diabetes.


2021 ◽  
Author(s):  
Thao Nguyen ◽  
Eli Costa ◽  
Tim Deibert ◽  
Jose Reyes ◽  
Felix Keber ◽  
...  

The development of a fertilized egg to an embryo requires the proper temporal control of gene expression. During cell differentiation, timing is often controlled via cascades of transcription factors (TFs). However, in early development, transcription is often inactive, and many TF levels are constant, suggesting that unknown mechanisms govern the observed rapid and ordered onset of gene expression. Here, we find that in early embryonic development, access of maternally deposited nuclear proteins to the genome is temporally ordered via importin affinities, thereby timing the expression of downstream targets. We quantify changes in the nuclear proteome during early development and find that nuclear proteins, such as TFs and RNA polymerases, enter nuclei sequentially. Moreover, we find that the timing of the access of nuclear proteins to the genome corresponds to the timing of downstream gene activation. We show that the affinity of proteins to importin is a major determinant in the timing of protein entry into embryonic nuclei. Thus, we propose a mechanism by which embryos encode the timing of gene expression in early development via biochemical affinities. This process could be critical for embryos to organize themselves before deploying the regulatory cascades that control cell identities.


2021 ◽  
Author(s):  
Emilia Dimitrova ◽  
Angelika Feldmann ◽  
Robin H van der Weide ◽  
Koen D Flach ◽  
Anna Lastuvkova ◽  
...  

Precise control of gene expression underpins normal development. This relies on mechanisms that enable communication between gene promoters and other regulatory elements. In embryonic stem cells (ESCs), the CDK-Mediator (CDK-MED) complex has been reported to physically link gene regulatory elements to enable gene expression and also prime genes for induction during differentiation. Here we discover that CDK-MED contributes little to 3D genome organisation in ESCs, but has a specific and essential role in controlling interactions between inactive gene regulatory elements bound by Polycomb repressive complexes (PRCs). These interactions are established by the canonical PRC1 (cPRC1) complex but rely on CDK-MED, which facilitates binding of cPRC1 to its target sites. Importantly, through separation of function experiments, we reveal that this collaboration between CDK-MED and cPRC1 in creating long-range interactions does not function to prime genes for induction during differentiation. Instead, we discover that priming relies on an interaction-independent mechanism whereby the CDK module supports core Mediator engagement with gene promoters to enable gene activation.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2716-2716
Author(s):  
Robert G. Harris ◽  
Diane Krause

Abstract Covalent modifications on histones are epigenetic changes that play critical roles in control of gene expression. Most studies correlating specific histone modifications with transcriptional activity have been performed in yeast, and little is known about their dynamics during hematopoietic differentiation. We examined the dynamics of histone modifications and chromatin accessibility during all-trans retinoic acid (ATRA) induced differentiation of promyelocytes down the neutrophil lineage. As a model system, we used the human promyelocytic NB4 cell line, which undergoes neutrophil differentiation in response to ATRA. Using chromatin immunoprecipitation (ChIP) and quantitative PCR, we measured changes in dimethyl K4 (2MeH3K4), trimethyl K4 (3MeH3K4) and acetyl lysine 9 (Ac9H3K9) of histone H3 in the promoters of 3 genes that undergo transcriptional activation (Defensin-a, C/EBP-b and RAR-b), 1 gene that undergoes transcriptional downregulation (Myeloperoxidase), one gene that is constitutively active (GAPDH) and 1 gene that is silent (Albumin) during ATRA-induced differentiation. We correlated the changes in histone modifications with the gene expression pattern of these genes. AcH3K9 levels correlated with active gene transcription. At time 0, levels of AcH3K9 were enriched 50-fold and 100-fold over input in the MPO and GAPDH promoters, respectively, but only 5-fold on the C/EBP-b, Def-a and RAR-b promoters. Consistent with this finding, levels of AcH3K9 increased to 40-fold over input within 24h of differentiation in the Def-a and C/EBP-b promoters. On the silent albumin promoter, AcH3K9 levels never increased over input after ATRA. For the methylation patterns on H3K4, however, the findings were quite revealing. As expected, on the active MPO promoter, 2MeH3K4 was enriched 60-fold. However, 2MeH3K4was also present at high levels (15-30-fold) on the promoters of unexpressed Def-a, C/EBP-b and RAR-b suggesting that silent genes that are “primed” for activation are enriched for 2MeH3K4, consistent with previous data in yeast. After differentiation with ATRA, 2MeH3K4 went up only 3-fold for Def-a and C/EBP-b. The most surprising changes were found in 3MeH3K4 levels and in chromatin modification at the RAR-b promoter. Consistent with previous data showing that 3MeH3K4 is associated with gene activation, time 0 levels of 3MeH3K4 were enriched 80-fold and 150-fold over input in the MPO and GAPDH promoters, respectively, and were at background levels in the C/EBP-b, Def-a, and RAR-b promoters. After differentiation, however, although there was a significant increase in 3MeH3K4 levels within 12 hours in the Def-a promoter, 3MeH3K4 never was present on the C/EBP-b promoter, despite a huge increase in gene transcription, as well as significant and rapid increases in AcH3K9 and 2MeH3K4. Perhaps the most significant findings, however, were at the promoter of the RAR-b gene. RAR-b is unique amongst the genes studies in that it is directly bound by the PML-RAR-a fusion protein. This promoter was not detectable by PCR in ChIP assays after ATRA addition. To test the hypothesis that histones were lost on the RAR-b promoter during ATRA-induced differentiation, we used MNase digestion of chromatin. Nucleosome loss was confirmed by a decrease in precipitated RAR-b promoter DNA within 24 hours of ATRA addition. In contrast, exon1 of RAR-b was modified in a manner similar to Def-a and C/EBP-b. These findings indicate that despite the seemingly coordinately regulated increase in transcription of multiple genes upon myeloid differentiation, the chromatin modifications on the promoters of these genes are regulated quite differently.


2002 ◽  
Vol 30 (4) ◽  
pp. 643-645 ◽  
Author(s):  
J. D. Reid ◽  
C. N. Hunter

Despite the global significance of chlorophylls and other modified tetrapyrroles, many aspects of their biosynthetic pathways are poorly understood. A key enzyme at the branch point between the haem and chlorophyll pathways, magnesium chelatase, couples the free energy of ATP hydrolysis to the insertion of magnesium into porphyrin, a process that is likely to be mediated through protein conformational changes. Conclusions from recent structural and functional studies of individual subunits are combined to provide a mechanistic outline of the full magnesium chelatase complex. Gathering further information presents a considerable challenge, and recent steps towards this goal will be introduced.


2000 ◽  
Vol 182 (22) ◽  
pp. 6503-6508 ◽  
Author(s):  
Mary T. Kelly ◽  
John A. Ferguson ◽  
Timothy R. Hoover

ABSTRACT Transcription by ς54-RNA polymerase holoenzyme requires an activator that catalyzes isomerization of the closed promoter complex to an open complex. We examined mutant forms ofSalmonella enterica serovar Typhimurium ς54that were defective in transcription initiation but retained core RNA polymerase- and promoter-binding activities. Four of the mutant proteins allowed activator-independent transcription from a heteroduplex DNA template. One of these mutant proteins, L124P V148A, had substitutions in a sequence that had not been shown previously to participate in the prevention of activator-independent transcription. The remaining mutants did not allow efficient activator-independent transcription from the heteroduplex DNA template and had substitutions within a conserved 20-amino-acid segment (Leu-179 to Leu-199), suggesting a role for this sequence in transcription initiation.


Sign in / Sign up

Export Citation Format

Share Document